Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program*

E. Y. Hsiao (蕭亦麒)¹, M. M. Phiilips², G. H. Marion³, R. P. Kirshner^{4,5}, N. Morrell², D. J. Sand⁶, C. R. Burns⁷, C. Contreras², P. Hoeflich¹, M. D. Stritzinger⁸, S. Valenti⁹, J. P. Anderson¹⁰, C. Ashall¹, C. Baltay¹¹, E. Baron¹², D. P. K. Banerjee¹³, S. Davis¹, T. R. Diamond¹⁴, G. Folatelli¹⁵, Wendy L. Freedman¹⁶, F. Förster^{17,18}, L. Galbany¹⁹, C. Gall²⁰, S. González-Gaitán²¹, A. Goobar²², M. Hamuy¹⁸, S. Holmbo⁸, M. M. Kasliwal²³, K. Krisciunas²⁴, S. Kumar¹, C. Lidman²⁵, J. Lu¹, P. E. Nugent^{26,27}, S. Perlmutter^{26,27}, S. E. Persson⁷, A. L. Piro⁷, D. Rabinowitz¹¹, M. Roth^{2,28}, S. D. Ryder²⁹, B. P. Schmidt³⁰, M. Shahbandeh¹, N. B. Suntzeff²⁴, F. Taddia³¹, S. Uddin⁷, and L. Wang^{32,33}

NIR spectroscopy of Type la supernovae Florida State University

- Good data is better than more data.
- Perfection in data taking is a virtue.

Image credit: Nick Suntzeff (I think)

Carnegie Supernova Project

CSP-I (2004-2008):

Build the low-redshift anchor for any Hubble diagram in a single, well-understood photometric system.

CSP-II (2011-2015):

 Observe SNe Ia in the Hubble flow to eliminate peculiar velocity errors. Phillips et al. (2018)

 NIR spectroscopy to improve k-corrections and physics. Hsiao et al. (2018)

Emphasis in the NIR!

CSP-II NIR spectra

- 661 NIR spectra of 157 SNe Ia.
 909 NIR spectra of all types.
- ~1 order mag increase in sample size.
- 77% of the NIR spectra taken with FIRE at (the real) LCO.

CSP-II NIR spectra

- 661 NIR spectra of 157 SNe Ia.
 909 NIR spectra of all types.
- ~1 order mag increase in sample size.
- 77% of the NIR spectra taken with FIRE at (the real) LCO.

Why NIR?

Why NIR?

- Differences between normal and peculiar la's are subtle in the optical.
- NIR probes deeper in the ejecta and shows drastic differences.

Type la supernova

- Unburned material Premax C I 1.069, He I 1.083 Marion et al. (2006), Hsiao et al. (2013, 2015), Boyle et al. (2017)
- Boundary between C/O burning Premax Mg II 1.093 Wheeler et al. (1998), Hsiao et al. (2013)
- Radioactive nickel Postmax H-band break Wheeler et al. (1998), Hoeflich et al. (2002), Hsiao et al. (2013)
- Stable nickel Transitional and nebular phase [Ni II] 1.939 Friesen et al. (2014), Wilk et al. (2018), Dhawan et al. (2018), Flörs et al. (2018)
- Companion signature Postmax P-beta 1.282, He I 1.083 Maeda et al. (2014), Sand et al. (2016), Botyanszki (2017)
- Central density and B-field [Sahana Kumar's talk] Nebular phase [Fe II] 1.644 Penney & Hoeflich (2014), Diamond et al. (2015), Diamond et al. (2018), Maguire et al. (2018)

9 Eric Hsiao <u>ehsiao@fsu.edu</u> Nidia Fest, November, 2018

Type II NIR spectroscopy Of Type IC SUPErnovae Florida State University

12 Eric Hsiao <u>ehsiao@fsu.edu</u> Nidia Fest, November, 2018

Davis et al. in prep

- NIR Paschen-γ region shows two distinct spectral type: <u>strong</u> and <u>weak</u>.
- Weak: weak features at 1.06 and 1.04µm.
 Prominent Sr II lines.
- <u>Strong</u>: strong feature at 1.06µm, no feature at 1.04µm. No strong Sr II lines.

- What are the 1.06µm • and 1.04µm lines?
- 1.04 shows up • earlier than 1.06 and has a wide range of velocities.

Fe II

Rest Wavelength (Angstrom)

Sc II

10000 10200 10400 10600

Scaled Flux

Pδ, Sc II

9800

Eric Hsiao ehsiao@fsu.edu Nidia Fest, November, 2018 14

СI

Pγ, ScII

15 Eric Hsiao <u>ehsiao@fsu.edu</u> Nidia Fest, November, 2018

Name	Photometric	NIR Spectroscopic	Publication
	Classification	Classification	
SN1999em	IIP	Weak	Hamuy et al. 2001, Elhamdi et al. 2003
$\mathrm{SN}2002\mathrm{hh}$	IIP	-	Pozzo et al. 2006
SN2004et	IIP	-	Maguire et al. 2010
SN2005cs	IIP	Weak	Pastorello et al. 2009
SN2008in	IIP	Weak	Takats et al. 2014
SN2009N	IIP	Weak	Takats et al. 2014
SN2009ib	IIP	Weak	Takats et al. 2015
SN2009md	IIP	-	Fraser et al. 2011
SN2012A	IIP	Strong	Tomasella et al. 2013
ŚN2012aw	ÎIP	Weak	Dall'Ora et al. 2014, Jerkstrand et al. 2014
SN2013by	IIL	Strong	Valenti et al. 2015
$\mathrm{SN2013ej}$	IIL	Strong	Valenti et al. 2014
SN2017eaw	IIP	Weak	Rho et al. 2018

Davis et al. in prep

 But remember in optical LCs, we see a continuum of plateau slopes from IIP to IIL.

- · Rejoice!
- There are NIR Type II spectral templates based on principal component analysis of CSP-II sample.

Thank you. And thank you, Nidia!

Take-home point

 SNe II in the NIR show distinct spectroscopic groups that largely correspond to the photometric classifications. (IIP=>weak, IIL=>strong)