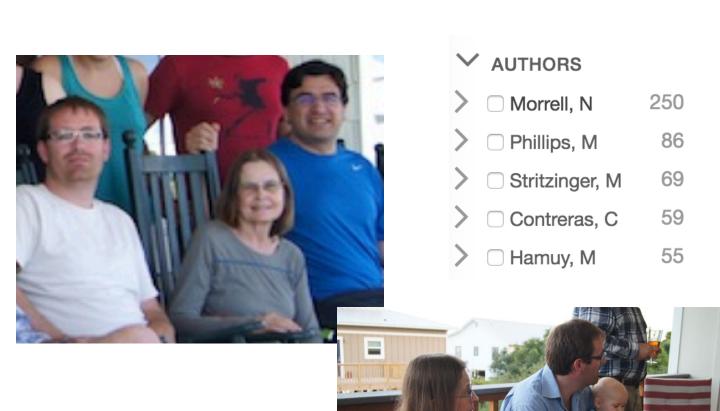
Red vs. Blue: Two distinction populations of SNe Ia?

Maximilian Stritzinger

max@phys.au.dk

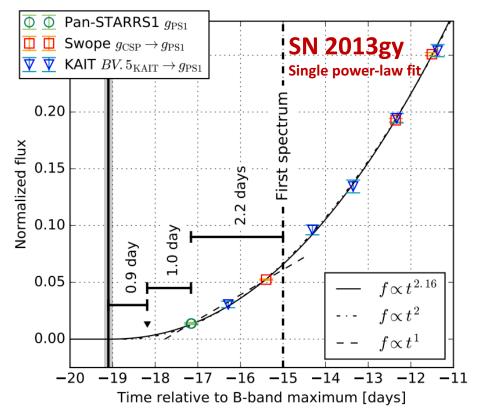
Nidia-fest, Bariloche 2018

VILLUM FONDEN



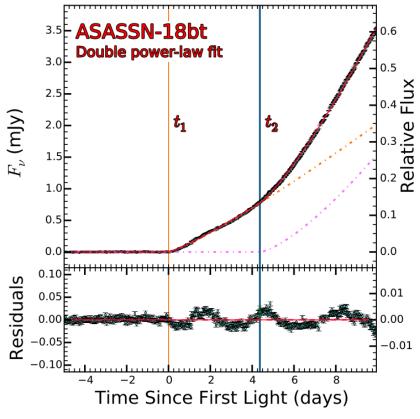
"Nidia, the monk astronomer", Wojtek

- Your humility, honesty & integrity
- Extreme dedication (du Pont TO & astronomer, +20%)
- Fantastic educator
- Supportive of numerous young and old researchers
- Always responses to requests and provides comments on a majority of manuscripts!
- Is one cool grandma, friend and serves as mom of the CSP!


Potential of Early Observations

- Avenue to constrain the primary radius and the radius of any companion,
 e.g., SN 2011fe; Nugent+11, Li+11 Bloom+12
- Possibility to constrain the explosion trigger
- A window to interaction between the outer SN ejecta and CSM and/or companion star

Diversity of early light curve evolution



Holmbo+arXiv:1809.01359

- Exhibits an exponential rise
 - → single power law

Shappee+in press

- Several day linear rise in flux followed by a exponential rise
- → double power law fit

© 2018. The American Astronomical Society. All rights reserved.

Red versus Blue: Early Observations of Thermonuclear Supernovae Reveal Two Distinct Populations?

Maximilian D. Stritzinger^{1,7}, Benjamin J. Shappee², Anthony L. Piro³, Christopher Ashall⁴, E. Baron^{5,8}, Peter Hoeflich⁴, Simon Holmbo¹, Thomas W.-S. Holoien³, M. M. Phillips⁶, C. R. Burns³, Carlos Contreras⁶, Nidia Morrell⁶, and Michael A. Tucker²

Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark; max@phys.au.dk

Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

The Observatories of the Camegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA

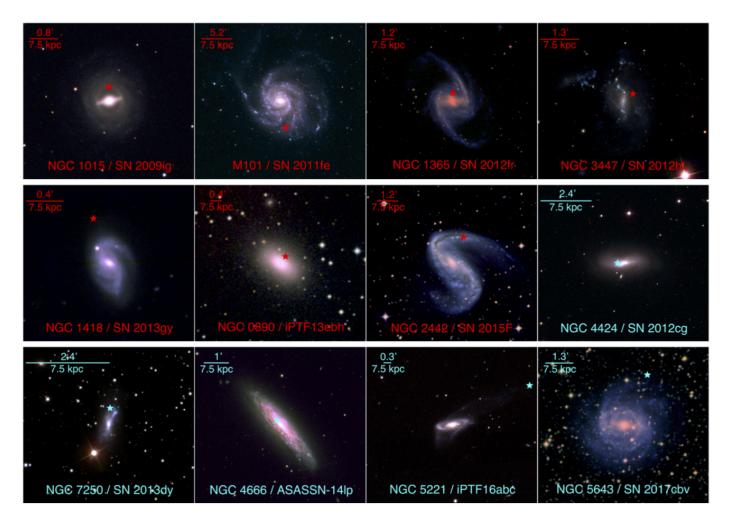
Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL, 32306, USA

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks, Room 100, Norman, OK 73019-2061, USA

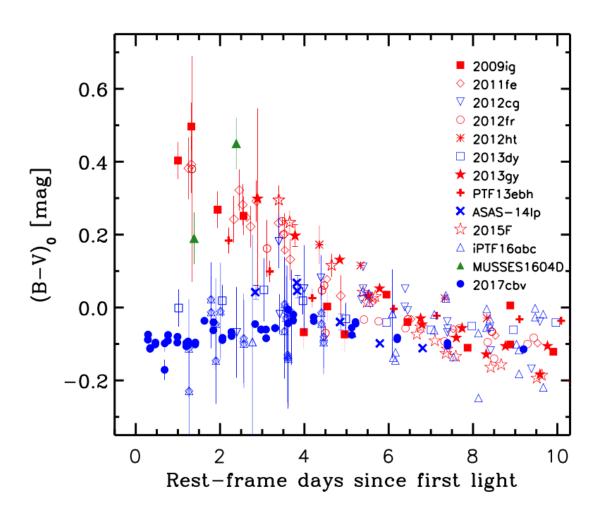
Camegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile

Received 2018 June 27; revised 2018 August 24; accepted 2018 August 28; published 2018 September 11

Abstract

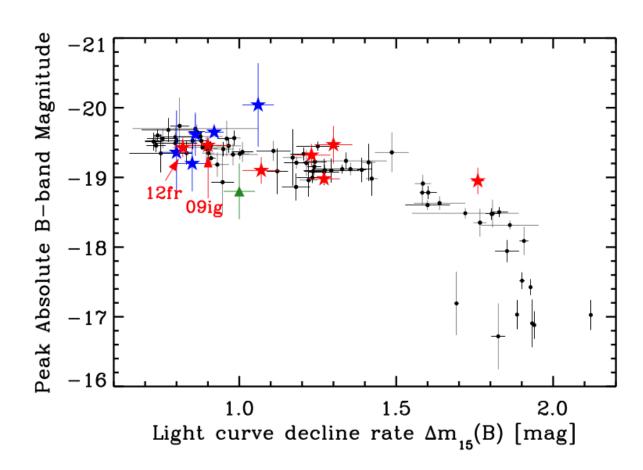

We examine the early phase intrinsic $(B-V)_0$ color evolution of a dozen SNe Ia discovered within three days of the inferred time of first light $(t_{\rm first})$ and have $(B-V)_0$ color information beginning within five days of $t_{\rm first}$. The sample indicates there are two distinct early populations. The first is a population exhibiting blue colors that slowly evolve, and the second population exhibits red colors and evolves more rapidly. We find that the early blue events are all 1991T/1999aa-like with more luminous, slower declining light curves than those exhibiting early red colors. Placing the first sample on the Branch diagram (i.e., ratio of Si II $\lambda\lambda$ 5972, 6355 pseudo-Equivalent widths) indicates that all blue objects are of the Branch shallow silicon (SS) spectral type, while all early red events except for the 2000cx-like SN 2012fr are of the Branch Core Normal (CN) or CooL (CL) type. A number of potential processes contributing to the early emission are explored, and we find that, in general, the viewing-angle dependance inherent in the companion collision model is inconsistent with all of the SS objects with early-time observations being blue and exhibiting an excess. We caution that great care must be taken when interpreting early phase light curves as there may be a variety of physical processes that are possibly at play and significant theoretical work remains to be done.

Key words: supernovae: general

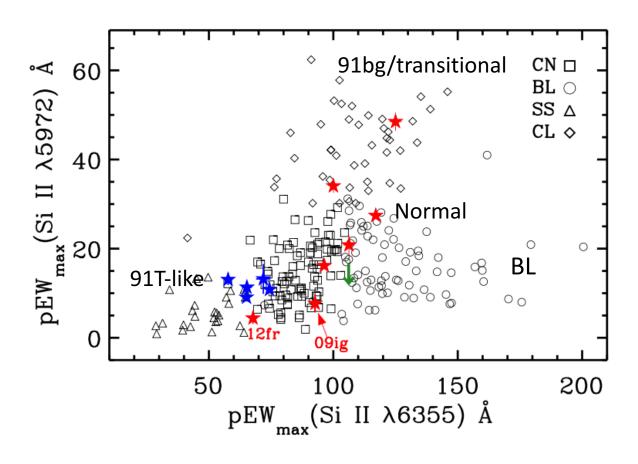

Early B-V color: sample

Sample selection criteria:

- Discovered within 3 days of t_{first}
- B-V color obtained within 5 days of t_{first}


Early sample $(B-V)_0$ color evolution

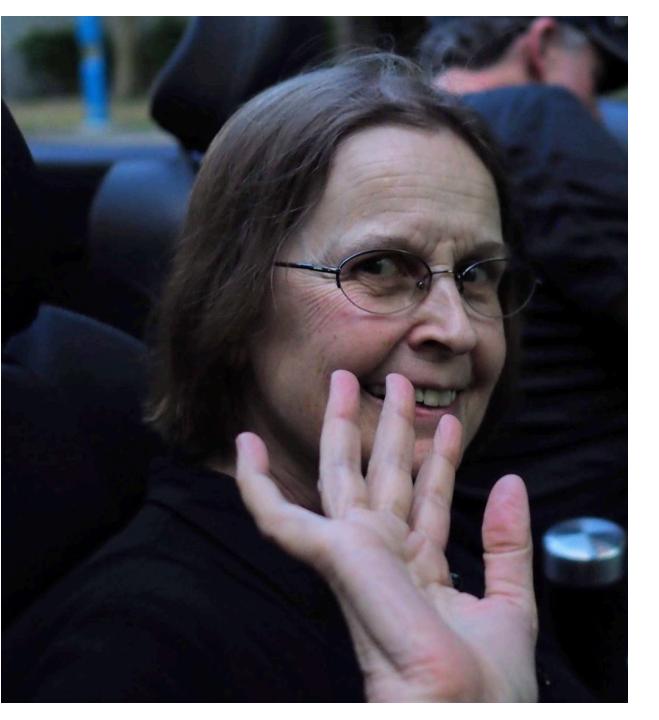
Red vs. Blue populations


- Blue objects, slowly evolve
- Red objects, rapidly evolve
- 50% difference in flux

Red vs. Blue: Phillips relation

- Blue objects are generally brighter
- Red objects are generally fainter
- Note peculiar 2000cx-like objects 2009ig & 2012fr

Red vs. Blue: Branch+06 Diagram



- Blue objects are either 1991T or 1999aa-like concentrated in the SS area extending to CN
- Red objects are CN or CL, except peculiar 2000cx-like SN 2012fr

A connection between early blue UV colors and spectral sub-type was also recently found *independently* by Jiang+18

Conclusion

- Identified two distinct early populations: red vs. blue
- All hosts are spirals: no trends between early color & host properties or locations
- Blue objects are 1991T/1999aa-like and SS with slowly declining light curves
- Red are CN/CL with more rapidly declining light curves
- Range of potential emission processes that must be considered:
- 1. SN ejecta / non-degenerate companion interaction (inconsistent with red vs. blue findings?)
- 2. ⁵⁶Ni mixing to high velocity (degrades spectral fits?)
- 3. explosive He burning on the surface \rightarrow double detonation scenario (needs work)
- 4. Interaction with CSM associated with tidally disrupted material from a WD+WD merger (needs work)
- 5. Composition/opacity differences in the outer layers (unburned carbon)
- Great care should be taken when interpreting early-phase observations
- Significant theoretical work remains to be done [talks by Jiang & Maeda-san]

"If I could, I would make all data that I obtain public on the www immediately!"

Early Sample of Type Ia supernovae

Table 1. Early Color Evolution Sample Parameters.

SN	Host	Red-shift	$E(B-V)_{MW}$	$E(B-V)_{host}$	t_{first}	t_{rise}	$\Delta m_{15}(B)$	M_B	Spectral-type ^a	Color	References(s)
			[mag]	[mag]	[MJD]	[days]	[mag]	[mag]			
2009ig	NGC 1015	0.00877	0.032		55062.9	17.1	0.90 ± 0.07	-19.46 ± 0.12	CN, HV	red	(1)
2011fe	M101	0.00080	0.008		55796.7	17.8	1.07 ± 0.06	-19.10 ± 0.19	CN, normal	red	(2)
2012cg	NGC 4424	0.00146	0.018	$0.18 \pm 0.05^{ m b}$	56061.8	19.5	0.86 ± 0.02	-19.62 ± 0.31	SS, 91T/99aa-like	blue	(3)
2012fr	NGC 1365	0.00546	0.018	0.03 ± 0.04^{c}	56225.8	16.9	0.82 ± 0.03	-19.43 ± 0.14	CN+SS, HV	red	(4)
2012ht	NGC 3447	0.00356	0.025	$0.05 \pm 0.01^{\circ}$	56278.0	17.6	1.27 ± 0.05	-18.98 ± 0.07	CN, normal	red	(5)
2013dy	NGC 7250	0.00389	0.140	$0.21 \pm 0.01^{ m d}$	56483.4	17.7	0.92 ± 0.03	-19.65 ± 0.04	SS, 91T/99aa-like	blue	(6)
2013gy	NGC 1418	0.01402	0.049	$0.11 \pm 0.06^{\circ}$	56629.4	19.1	1.23 ± 0.06	-19.32 ± 0.16	CN, normal	red	(7)
iPTF 13ebh	NGC 890	0.01327	0.067	$0.07 \pm 0.02^{\rm c}$	56607.9	14.8	1.76 ± 0.02	-18.95 ± 0.19	CL, normal	red	(8)
ASASSN-14lp	NGC 4666	0.00510	0.021	0.35 ± 0.01^{c}	56998.5	16.7	0.80 ± 0.05	-19.36 ± 0.60	SS, 91T-like	blue	(9)
2015F	NGC 2442	0.00489	0.175	$0.16 \pm 0.03^{\circ}$	57088.4	18.5	1.25 ± 0.05	-19.47 ± 0.27	CN, normal	red	(10)
iPTF16abc	NGC 5221	0.02328	0.028	$0.05 \pm 0.03^{\mathrm{e}}$	57481.6	17.9	0.85 ± 0.05	-19.20 ± 0.40	SS, normal/91T-like	blue	(11)
MUSSES1604D		0.11737	0.026		57481.8	22.4	1.00 ± 0.07	-18.80 ± 0.40	BL, HV	red	(12)
2017cbv	NGC 5643	0.00400	0.150		57821.9	18.3	1.06 ± 0.05	-20.04 ± 0.60	SS, 91T-like	blue	(13)