

Constraining the explosions and progenitors of Type Ia supernovae

Dr. Kate Maguire

Queen's University Belfast

European Research Council

Established by the European Commission

Importance of Type la supernovae

- Endpoint of stellar evolution in interacting binary systems
- Vital role in chemical enrichment main producers of iron in the Universe
- Best known as cosmological distance indicators

What systems explode as normal Type la supernovae?

Case 1: Single-degenerate

Red giant? Main-sequence star?

Case 2: Double-degenerate

Another white dwarf?

- Progenitor system has never been directly detected
- These are subtle signatures

'Popular' progenitor models: Chandra and sub-Chandra

Delayed detonation of a Mchandra white dwarf? (Whelan & Iben 1973; Nomoto 1982, Blinnikov & Khokhlov 1986)

Detonation of He shell on a **sub-M**_{chandra} white dwarf (Shen+ 2010)

Violent merger of a **sub-M_{chandra}** white dwarf (Pakmor+ 2012)

What observations can distinguish between explosion scenarios?

<u>What observations can distinguish between explosion</u> <u>scenarios?</u>

Bariloche, Nov 09 2018

Interaction with a companion star

Companion star

Model predictions of Kasen (2010)

 Bump in the early-time light curves

Searches for companion star interaction

- Stacked light curves from
 Supernova Legacy Survey
- ~90 SNe Ia at z<0.7
- <20% with red giant companions

Bianco et al. (2011)

- Three Kepler light curves 30 min cadence
- Rule out red giant (and some main sequence) companions for two objects

Different explosion mechanisms also produce variations

0.06 M_{\odot} of He

Handful of well-studied objects

Parameter study of early light curve models, TURTLS

- Monte Carlo LTE radiative transfer code, **TURTLS** (Magee+ 2018)
- Different progenitor models have different Ni distributions + effects of asymmetry

Magee+ (2018)

Kate Maguire

Parameter study of early light curve models, TURTLS

- Varying density profiles, transition velocities, Ni and ejecta masses
- Extending to include He shell detonations & CSM (Magee, KM+ in prep)
- Compare to early light curves (literature and new samples e.g. ATLAS)

Kate Maguire

Bariloche, Nov 09 2018

What observations can distinguish between explosion scenarios?

High-velocity Call features

- Seen in many SNe Ia (Childress+ 2014,Silverman+ 2015) — >80-90% of pre-max SN Ia spectra in PTF sample (Maguire+ 2014)
- Strength of HV component is stronger in broader SNe Ia that occur in higher sSFR rates hosts (Maguire+ 2014, Pan+ 2014)

SN 2012fr (Maund+ 2013)

- Low continuum polarisation
- But strong polarisation across Si
 II HV and Ca II HV (p=0.85%)
 features
- Due to CSM or intrinsic to the SN?

What observations can distinguish between explosion scenarios?

Hydrogen/Helium-rich companion material

d

- Originally predicted in Wheeler+ (1975) & new modelling (Marietta+ 2000, Pan+ 2010, 2012, Liu+ 2013)
- Predicted to be present at low velocities (~500-1000 km/s)
- WD+He < WD+MS < WD+RG

Little mass lost (~0.05 M_☉) Nearly whole envelope mass lost (~0.3 M_☉)

Marietta et al. (2000)

Hydrogen/Helium-rich companion material

- Now combined sample 17 SNe Ia (stripped H mass < 0.001–0.06 M_☉)
- Rule out all main-sequence and red-giant companions
- Simplest scenario: Don't have a non-WD companion accreting from a H-rich companion
- Ways out:
 - Spin-up/spin-down scenario? (Justham+ 2011)
 - The H material be present but not visible

Maguire et al. (2016)

What observations can distinguish between explosion scenarios?

Difference in central densities

sub-M_{chandra}

Lower central density

- More electron capture -> neutron-rich material
- More stable 58Ni and 54Fe

- Less electron capture
- More radioactive ⁵⁶Ni

Presence of significant stable material is key probe of explosion mechanism

Evidence for significant stable Ni in a SN la remnant

- Measure Ni/Fe abundance from Xray spectra in SN remnants
- High Ni/Fe ratio observed for 3C 397
- Suggests high-mass white dwarf

3C 397

Ν

NE rim

Ш

SW rim

 $2' = 5.8 \, \text{pc}$

Comparing stable Ni predictions with observations

- Majority are consistent with **Chandrasekhar-mass explosions**
- To explain with sub-M_{chandra} explosions, need to increase white dwarf metallicity
- But absolute scale is uncertain non-LTE radiative transfer modelling needed (Shingles+ submitted)

Line shifted from rest wavelength

Explosion geometry

Maeda+ (2010)

Explosion geometry - updated sample from Maeda+ (2010)

Delayed detonation model is too symmetric

(b) N100; t = 0.70 s

- Roughly symmetric ejecta distribution
- Even for most asymmetric model of Seitenzahl+ (2013), velocity offset is only ~200 km/s

Mass fractions

Kate Maguire

Bariloche, Nov 09 2018

Violent merger model is too asymmetric

Nickel distribution of violent merger model (Bulla+ 2015)

Bariloche, Nov 09 2018

t= 50.0s

Pakmor+ (2015)

Double detonation model is just right

Kate Maguire

Mass fractions

What observations can distinguish between explosion scenarios?

Circumstellar interaction at late times

- Detection of CSM at maximum light in 20% of SNe Ia (Patat+ 2007, Sternberg+ 2011, 2014, Maguire+ 2013) located at > 10¹⁶ cm
- Rare Ia-CSM show strong interaction with link to 91T-like events (Leloudas et al. 2015)

Can we see the SN ejecta interacting with the CSM at late times?

- HST NUV imaging study of 72 SNe Ia at 1-3 years after peak (P.I. Graham)
- UV contamination from hosts is low and see interaction signatures such as Mg II 2800 A

Circumstellar interaction in SN 2015cp

- Detection in 1 SN SN 2015cp at 664 d
- Early spectra suggest 91T-like and 11kx event but no signs of interaction

Graham,..KM+ 2018, submitted

- Follow-up observations at VLT+XSH, Keck+LRIS, STIS spectrum
- No detections with VLA, AMI, Swift
- Detection of Halpha and Ca II emission
- From timing of detection, constrain CSM mass to <0.5 Msun (Harris+ 2018 submitted)

Bariloche, Nov 09 2018

Summary

- No companion star interaction (or stripped Hydrogen) suggest
 WD binaries but need to be careful of degeneracies
- Presence of stable material suggest H-rich M_{chandra} mass companions
- Line shifts at late times suggest asymmetry best agreement with He-shell detonation of sub-Chandra WDs (potential surviving companions observed, Shen+ 2018)
- No conclusive evidence for single channel for all objects!
- How do we make progress? Need low-redshift samples with very early to late-coverage spectral and light curve