

Near-IR Hubble Diagrams of SNe II

Ósmar Rodríguez Ph.D student @ UNAB Supervisor: Prof. Giuliano Pignata Massive Stars & SNe, Nov. 5-9th, 2018

Motivation

Redshift-independent distances allow us to compute:

- Properties of astrophysical objects at z<0.01
 - Brightness (SN Iax 2014dt @ z=0.005)
 - Mass (N6946-BH1 @ z=0.0001)
- Properties of the Universe
 - Expansion rate (0.01-0.02<z<0.15)
 - Deceleration parameter (z>0.3)

Motivation

Redshift-independent distances allow us to compute:

- Properties of astrophysical objects at z<0.01
 - Brightness (SN lax 2014dt @ z=0.005)
 - Mass (N6946-BH1 @ z=0.0001)

Swiss army knife for extragalactic distances

SBF

FP

SNI

Motivation

Redshift-independent distances allow us to compute:

- Properties of astrophysical objects at z<0.01
 - Brightness (SN lax 2014dt @ z=0.005)
 - Mass (N6946-BH1 @ z=0.0001)

Swiss army knife for extragalactic distances

Methods to measure SN II distances

Standardized candle method (SCM)

Photospheric Magnitude Method (PMM)

To measure a PMM distance, we need:

- one v_{ph} measurement at "any" epoch
- photometry

PMM does not work at <30 d * Error on explosion epoch * CSM interaction

Optical SN II Hubble diagrams

Host galaxy extinction

Methods to measure Av(host) are still not well-established (e.g., NaID EW, Poznanski+11; Color curve, Olivares+10)

Host galaxy extinction

SNe II at near-IR wavelengths

Observing at near-IR has two clear benefits:

Near-IR light less affected by dust
 SNe II: few and weak spectral lines at near-IR bands

Error Budget

 μ statistical errors:

Rodríguez+18

Term	Typical rms	$\mathrm{rms}(\mu_J)$	% of total error
Av(host)	0.3 mag	0.079	42.1%
t_0	$2.6 \mathrm{d}$	0.064	27.6%
m_J	0.048 mag	0.048	15.5%
$v_{ m ph}$	$60 {\rm km s^{-1}}$	0.042	11.9%
$cz_{ m hel}$	$29 {\rm km s^{-1}}$	0.020	2.7%
K_J	$0.003 \mathrm{mag}$	0.003	0.1%
$E_{\rm G}(B-V)$	0.004 mag	0.003	0.1%
	Total	0.122	100.0%

 μ errors are dominated by Av(host) errors, even in the J-band (maybe we are overestimating the Av(host) error)

We need an accurate method to measure Av(host)!!!

Near-IR SN II Hubble diagrams

Main results:

1) #SNe=15, rms(HD,J)=0.13 mag

2) We cannot discard a true rms(HD) of 0.23 mag (99% CL)

-> It is necessary to increase the # of SNe II observed at near-IR

Optical/near-IR follow-up

In 2015B, we started and observational campaign to observe SNe II at optical and near-IR

Targets:

- SNe II at z > 0.01
- Explosion epoch constrained within a week

We collected:

- Near-IR photometry during the first three months.
- Optical spectroscopy

to measure the expansion velocity.

- **Optical photometry** to estimate Av(host).

Telescope	Mirror
REM	0.6 m
TRAPPIST-S	$0.6 \mathrm{m}$
IRIS	$0.8 \mathrm{m}$
LCO 1.0	$1.0 \mathrm{m}$
SMARTS 1.3	$1.3 \mathrm{m}$
FTN/FTS	$2.0 \mathrm{m}$
MPG	$2.2 \mathrm{m}$
du Pont	$2.5 \mathrm{~m}$
NTT	$3.6 \mathrm{m}$
SOAR	$4.1 \mathrm{m}$
Clay	$6.5 \mathrm{m}$
Gemini-S	$8.1 \mathrm{m}$

Optical/near-IR follow-up

Optical/near-IR follow-up

Optical vs near-IR SN II HD

Summary

- We collected new optical/near-IR data of SNe II, which are useful to measure distances with the PMM

- We construct Hubble diagrams with SNe II at cz>4000 km/s, obtaining a rms of 0.18 mag for I- and J-band

- From the J-band HD, we obtained $H_0 = 72.2 + 3.1 \text{ Mpc/km/s}$