Measuring the Hubble Constant: It takes a Village

Massive Stars the Supernovae, Bariloche, 2018

A Brief History of H_o

$$\frac{v}{c} = \frac{\delta t_2}{\delta t_1} - 1 = \frac{R_2}{R_1} - 1$$
(22)

mesure donc l'effet Doppler apparent dû à la variation du rayon de l'univers. Il est égal à l'excès sur l'unité du rapport des rayons de l'univers à l'instant où la lumière est reçue et à l'instant où elle est émise. v est la vitesse de l'observateur qui produirait le même effet. Lorsque la source est suffisamment proche nous pouvons écrire approximativement

$$\frac{v}{c} = \frac{R_2 - R_1}{R_1} = \frac{dR}{R} = \frac{R'}{R} dt = \frac{R'}{R} r$$

où r est la distance de la source. Nous avons donc

 $\frac{\mathbf{R}'}{\mathbf{R}} = \frac{r}{cr}$ (23) [...]

Utilisant les 42 nébuleuses figurant dans les listes de Hubble et de Strömberg (¹), et tenant compte de la vitesse propre du soleil (300 Km. dans la direction $\alpha = 315^{\circ}$, $\delta = 62^{\circ}$), on trouve une distance moyenne de 0,95 millions de parsecs et une vitesse radiale de 600 Km./sec, soit 625 Km./sec à 10° parsecs (²).

Nous adopterons donc

$$\frac{\mathrm{R}'}{\mathrm{R}} = \frac{v}{rc} = \frac{625 \times 10^5}{10^6 \times 3,08 \times 10^{18} \times 3 \times 10^{10}} = 0,68 \times 10^{-27} \,\mathrm{cm}^{-1} \quad (24)$$

Lemaitre, G. (1927) Annales de la Société Scientifique de Bruxelles, A47, p. 49-59

A Brief History of H_o

Hubble, E. (1929), PNAS

The outstanding feature, however, is the possibility that the velocitydistance relation may represent the de Sitter effect, and hence that numerical data may be introduced into discussions of the general curvature of space. In the de Sitter cosmology, displacements of the spectra arise from two sources, an apparent slowing down of atomic vibrations and a general tendency of material particles to scatter. The latter involves an acceleration and hence introduces the element of time. The relative importance of these two effects should determine the form of the relation between distances and observed velocities; and in this connection it may be emphasized that the linear relation found in the present discussion is a first approximation representing a restricted range in distance.

deSitter's solution (like Einstein's) was a static, empty space-time with positive curvature. The Hubble law in such a universe would look linear at small distances, but was in fact quadratic.

A Brief History of Ho

A Brief History of Ho

A Brief History of Ho

CARNEGIE | The Carnegie Observatories

CARNEGIE The Carnegie Observatories **SCIENCE**

Cepheids are Difficult at Large Distances Not just dimmer, but fields are more crowded.

SNe Ia to the Rescue!

Pros: Bright, and Unlike Cepheids, SNe Ia Fade

Geometric Distances

The Carnegie Supernova Project I (CSP-I)

SUPER NOVA MEETING, CARNEGIE OBSERVATORIES, SANTA BARBARA STREET, PASADENA, CALIFORNIA, AUGUST 7, 2006 Mark Phillips, Eric Hsiao, Nick Suntzeff, Pamela Wyatt, Eric Persson, Wendy Freedman, Nidia Morrell, Sergio Gonzalez Miguel Roth, Christopher Burns, Gaston Folatelli, Carlos Contreras, Barry Madore, Mario Hamuy

Major goals of CSP:

- Well-defined photometric system
- Leverage the NIR to characterize/reduce dust systematics
- NIR Hubble-Lemaître diagram
- Measure Hubble constant

Three corrections

- Faster-Fainter
- Redder-Fainter
- Host Mass/Metallicity/SFR

Folatelli et al. (2010)

A New Shape Parameter

The Carnegie Observatories

SCIENCE

A New Shape Parameter

Extinction

Using Fitzpatrick (1999) reddening law

CSP-I Phillips Relation

- A new light-curve shape (*s*_{BV}) that is more robust for NIR and fast-decliners.
- Extinction from observed colors using extinction law (Fitzpatrick '99)
- *R_V* is not a constant: drawn from a distribution.

CSP-I Hubble Diagram

CMB Can also Measure Ho

Resolving the Tension

- Problem with the Planck data? Not likely.
- Problem with the SN Ia data? Not likely.
- Living in a local bubble?
- Problem with LCDM?
- Problem with the Cepheid calibration?
- New Physics?

Living in a Bubble?

Living in a Bubble?

Could LCDM be the Problem?

Use $D_A(z)$ directly measured by SNe Ia to turn $\theta_s \rightarrow r_s$.

Could LCDM be the Problem?

Use $D_A(z)$ directly measured by SNe Ia to turn $\theta_s \rightarrow r_s$.

Cepheid Calibration?

Cepheid Calibration?

Carnegie Hubble Project

Mager, Madore & Freedman (2008)

CSP-II

