

S.D. VERGANI The host galaxies of GRBs & peculiar/extreme SNe

JURE JAPELJ RUBEN SALVATERRA JESSE PALMERIO UVA, THE NETHERLANDS

INAF, ITALY

IAP, FRANCE

S.D. VERGANI

The host galaxies of GRBs & peculiar/extreme SNe

LGRB & MASSIVE STARS

LGRBrate = efficiency x SFR ?

Which are the progenitor star conditions needed to have a LGRB?

Single star models predict very low metallicity for the progenitor star

Aim: infer information on the progenitor through host galaxy studies

How: Comparison of the properties of LGRB host galaxies with those of star-forming galaxies (weighted by their SFR)

LGRB HOST GALAXIES POPULATION STUDIES: COMPLETE UNBIASED SAMPLES

- TOUGH: 69 galaxies, z completeness 85%, photometry Hjorth+12
- X-Shooter sample: 96 galaxies, complete up to z<1, spectroscopy Krühler+15
- Swift/BAT6: 58 galaxies, z completeness 97%, photometry & spectroscopy
 Salvaterra+12
- SHOALS: 119 galaxies, z completeness 92%, photometry *Perley+16*

LGRB HOST GALAXIES POPULATION STUDIES: COMPLETE UNBIASED SAMPLES

- 0.3<z<1 Vergani+15; Japelj, Vergani+16
- 1<z<2 Vergani+17; Palmerio, Vergani+18 subm.

Host galaxy stellar mass

Host galaxy metallicity

LGRB HOST GALAXIES POPULATION STUDIES: COMPLETE UNBIASED SAMPLES

Metallicity is the driving factor, but Z_{th} higher than expected form single star models

INDIRECT CONSTRAINT ON LGRB PROGENITOR MODELS

- integrated metallicity good proxy of GRB site metallicity
- $Z_{th} \sim 0.7 Z_{sun}$ is a relative value (oxygen)
- Single star models need Z<0.2 Z_{sun} (iron)

- Single star models with (e.g.:Georgy+12):
 - rapid rotation
 - chemically homogeneous mixing
 - weak magnetic core-envelope coupling
- Binary stars (e.g.:Song+16)
- More than one channel?
- High O/Fe abundances

Christensen+08 Levesque+11 Izzo+17 Krüler+17

CONCLUSIONS

 Metallicity plays a key role in LGRB production, but thresholds higher than expected

can we accommodate single star progentior models? binary stars?

LGRBs VS IC-BL SNE

- Has every Ic-BL SNe an associated LGRB (orphan)?
 It seems not : radio works (Corsi+2016) + spectroscopic comparison (Modjaz+2017) less Mej, less KE (e.g.: Mazzali+2002)
- Why some Ic-BL SNe do not have an associated LGRB?
- Are their progenitor stars different? How?
- Past works on the host galaxies are based on targeted samples or put the two classes together

LGRBS VS IC-BL SNE

Japelj, Vergani et al. 2018

1.0 SN Ic - BLGRB - SN 0.8Praction Fraction 0.2(b) 0.0 2.0 3.0 0.0 0.52.51.01.5Offset / r₅₀ Metallicity

LGRBs VS IC-BL SNE

Japelj, Vergani et al. 2018

Normalized offset

Metallicity

LGRBs VS IC-BL SNE

Japelj, Vergani et al. 2018

Limited by low-number statistics

Normalized offset

CONCLUSIONS

- Metallicity plays a key role in LGRB production, but thresholds higher than expected can we accommodate single star progentior models? binary stars?
- the host galaxies of Ic-BL SNe with and without GRBs are similar, but larger offsets and higher Z for Ic-BL SNe without GRBs there is a genuine population of Ic-BL SNe same progenitor star but GRB only if Z below Z_{th}?

LGRBS VS HI-POOR SLSN

As less biased as possible

- LGRB host galaxies: Swift/BAT6 sample
- redshift range 0.3<z<0.7
- NIR photometry necessary (upper limits & detections) : stellar masses
- spectroscopy

LGRBS VS HI-POOR SLSN

Japelj, Vergani+2016

CONCLUSIONS

- Metallicity plays a key role in LGRB production, but thresholds higher than expected can we accommodate single star progentior models? binary stars?
- the host galaxies of Ic-BL SNe with and without GRBs are similar, but larger offsets and higher Z for Ic-BL SNe without GRBs there is a genuine population of Ic-BL SNe same progenitor star but GRB only if Z below Z_{th}?
- LGRB and HI-poor SLSN host galaxies at 0.3<z<0.7 are similar, maybe SLSN host are less massive (see also Lunnan+14; Schulze+17)
 common progenitors? what makes the difference?

Thank you!