Observational differences and similarities between SNeII and stripped envelope events Joe Anderson (ESO)

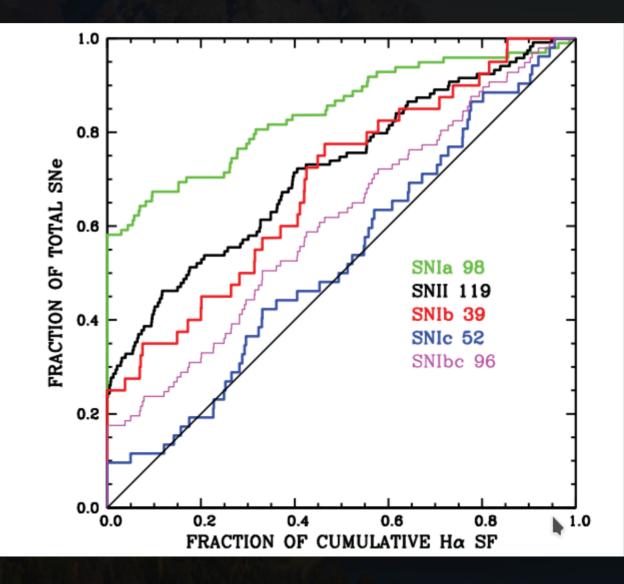
Nidiafest... in Bariloche!

Core-collapse supernova (CCSNe) progenitor constraints Contradictory conclusions...? (SNII=IIP+IIL, SE-SNe=IIb+Ib+Ic)

- SE-SN ejecta mass constraints suggest low-mass progenitors (consistent with SNII progenitors?) (e.g. Drout+11; Lyman+16; Prentice+16; Taddia+18)
- Environment studies (both resolved and unresolved) suggest higher mass progenitors for SNIc, then SNIb, then SNII (e.g. Anderson+12; Galbany+16; Kangas+17; Maund17,18)
- Direct detections (lack off) for SE-SNe suggest low-mass progenitors (?) (e.g. Eldridge+13)
- Nebular constraints suggest SNIc come from higher mass progenitors (e.g. Fang+18)

Core-collapse supernova (CCSNe) progenitor constraints Contradictory conclusions...?

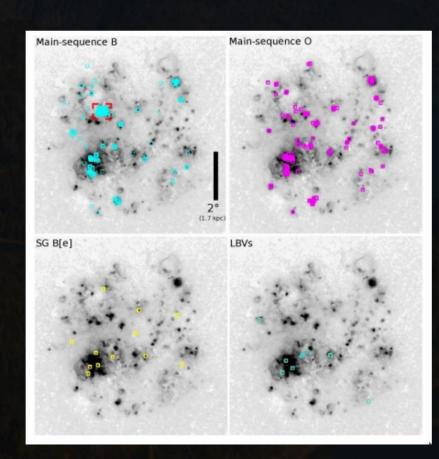
- SE-SN ejecta mass constraints suggest low-mass progenitors (consistent with SNII progenitors?)
- Environment studies (both resolved and unresolved) suggest higher mass progenitors for SNIc, then SNIb, then SNII
- Direct detections (lack off) for SE-SNe suggest low-mass progenitors (?)
- Nebular constraints suggest SNIc come from higher mass progenitors

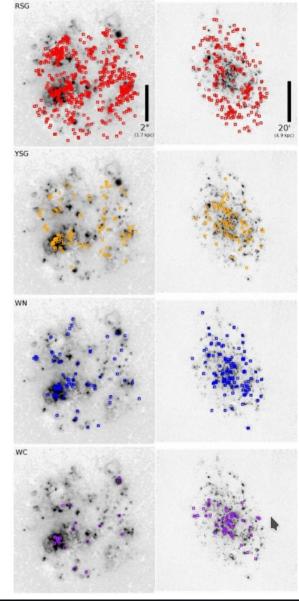

How do we put all this together to get a complete picture of the mass ranges for different CC SN progenitors? How can we estimate the relative contribution of e.g. single-star and binary system scenarios?

This talk:

1) "Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies" (Kangas et al. 2017)

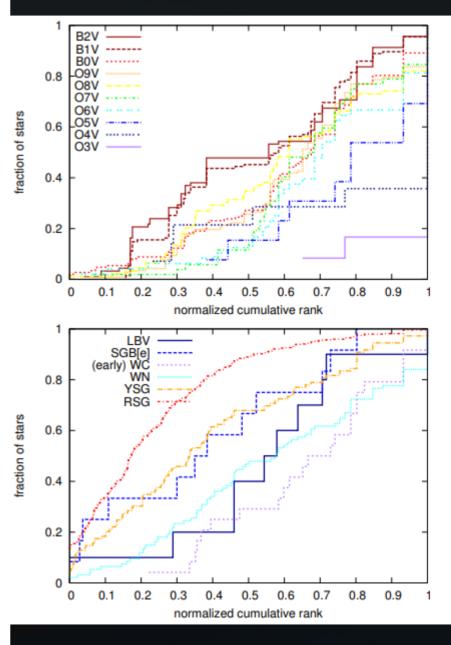
2) "Significant differences in the estimated ⁵⁶Ni masses of SNeII and stripped-envelope events (SE-SNe)" (Anderson in prep.)

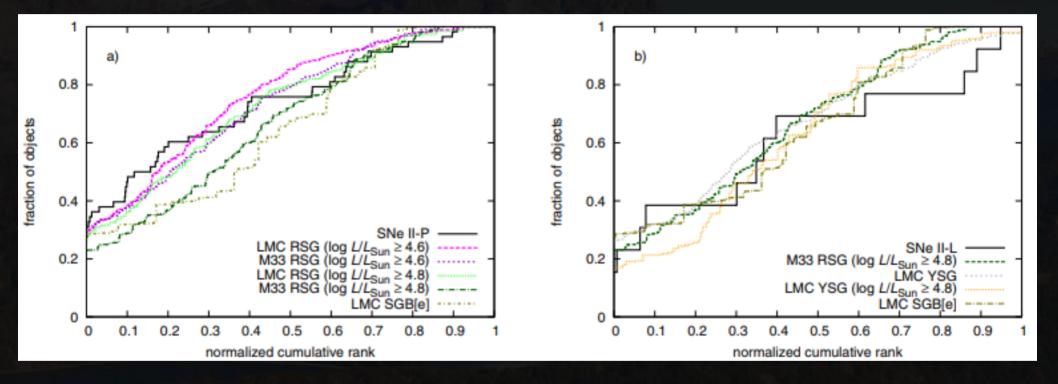

A clear sequence of increasing association of SN types to host galaxy H-alpha emission (Anderson+12) = a sequence of increasing progenitor mass...



"Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies" (Kangas et al. 2017)

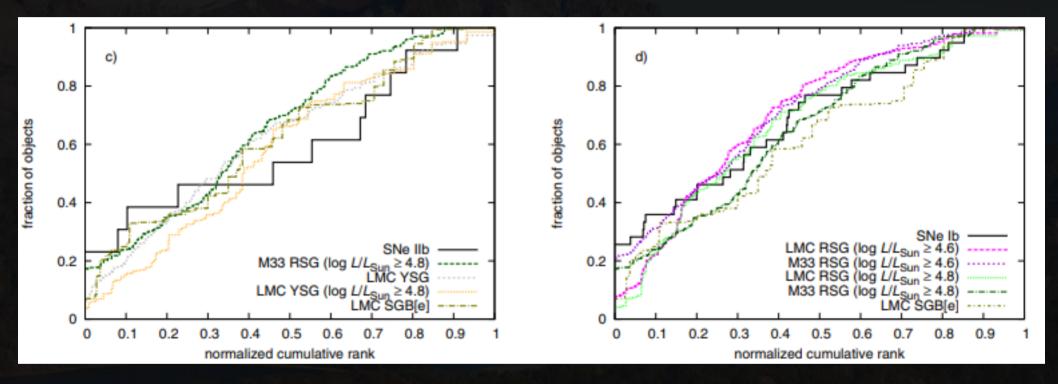
- spatial distribution of stars w.r.t. H-alpha emission (Stellar catalogues: Bonanos+09; Neugent&Massey11; Drout+12; Neugent+12; Hainich+14; Humphreys+14; Smith&Tombleson15)


LMC+M33

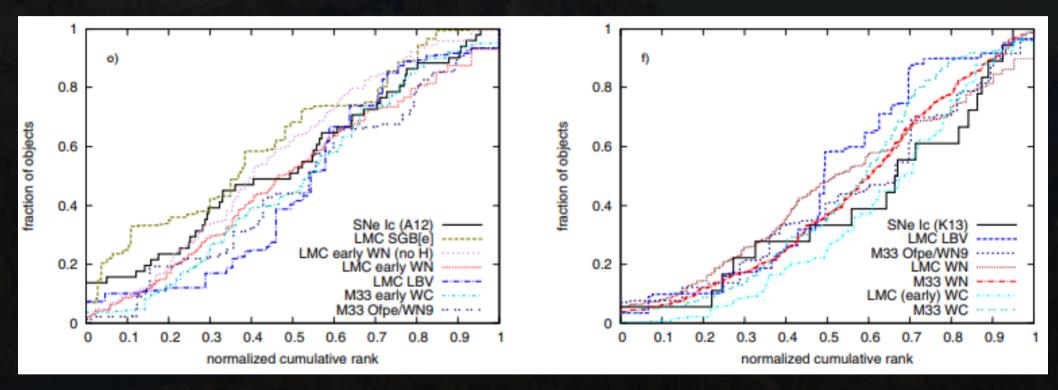


Spatial distributions of massive stars w.r.t. H-alpha (Kangas+17)

		20 Mpc		35 Mpc	
Stellar type	Ν	(NCR)(acc)	(NCR)(err)	(NCR)(acc)	(NCR)(err)
Random	250	0.095 ± 0.007	_	0.101 ± 0.006	_
B2V (8 <i>M</i> _☉)	92	0.486 ± 0.030	0.472 ± 0.030	0.524 ± 0.030	0.513 ± 0.029
B1V (13 M _o)	135	0.530 ± 0.024	0.509 ± 0.025	0.537 ± 0.023	0.529 ± 0.023
B0V (17.5 M_{\odot})	147	0.627 ± 0.022	0.610 ± 0.023	0.631 ± 0.022	0.603 ± 0.022
O9V (20 M _o)	117	0.692 ± 0.022	0.658 ± 0.023	0.646 ± 0.023	0.615 ± 0.023
O8V (25 M_{\odot})	89	0.667 ± 0.028	0.637 ± 0.029	0.623 ± 0.030	0.594 ± 0.030
O7V (31 M _o)	52	0.719 ± 0.027	0.685 ± 0.029	0.678 ± 0.030	0.645 ± 0.031
O6V (37 M _o)	48	0.742 ± 0.031	0.711 ± 0.034	0.706 ± 0.035	0.673 ± 0.036
O5V (44 M _o)	13	0.805 ± 0.065	0.776 ± 0.060	0.785 ± 0.061	0.755 ± 0.063
O4V (53 M _o)	14	0.820 ± 0.073	0.784 ± 0.075	0.792 ± 0.085	0.745 ± 0.083
O3V (64 M _o)	12	0.961 ± 0.027	0.931 ± 0.030	0.952 ± 0.034	0.911 ± 0.037
RSG	543	0.182 ± 0.010	0.180 ± 0.010	0.229 ± 0.010	0.228 ± 0.010
RSG (log $L/L_{\odot} < 4.6$)	361	0.155 ± 0.011	0.152 ± 0.011	0.196 ± 0.011	0.196 ± 0.011
RSG (log $L/L_{\odot} \ge 4.6$)	182	0.236 ± 0.018	0.239 ± 0.018	0.295 ± 0.017	0.290 ± 0.017
RSG (log $L/L_{\odot} \ge 4.8$)	76	0.267 ± 0.031	0.268 ± 0.031	0.321 ± 0.029	0.321 ± 0.029
YSG	109	0.331 ± 0.029	0.328 ± 0.029	0.387 ± 0.028	0.375 ± 0.028
YSG (log $L/L_{\odot} \ge 4.8$)	37	0.373 ± 0.044	0.362 ± 0.044	0.417 ± 0.047	0.412 ± 0.044
SG B[e]	12	0.340 ± 0.086	0.342 ± 0.079	0.371 ± 0.083	0.375 ± 0.082
LBV	10	0.523 ± 0.082	0.511 ± 0.075	0.539 ± 0.085	0.527 ± 0.080
Classical LBV	3	0.774 ± 0.115	0.750 ± 0.086	0.785 ± 0.110	0.761 ± 0.096
Low-luminosity LBV	7	0.416 ± 0.077	0.409 ± 0.072	0.434 ± 0.087	0.427 ± 0.081
WN	94	0.561 ± 0.031	0.544 ± 0.032	0.575 ± 0.032	0.553 ± 0.032
Early WN	67	0.508 ± 0.035	0.490 ± 0.036	0.525 ± 0.036	0.503 ± 0.036
Late WN	27	0.676 ± 0.058	0.663 ± 0.057	0.684 ± 0.059	0.665 ± 0.057
WN (no H)	45	0.515 ± 0.043	0.492 ± 0.044	0.517 ± 0.043	0.502 ± 0.043
Early WN (no H)	38	0.442 ± 0.039	0.419 ± 0.041	0.442 ± 0.039	0.430 ± 0.040
Late WN (no H)	7	0.847 ± 0.081	0.832 ± 0.073	0.866 ± 0.070	0.821 ± 0.076
(Early) WC	24	0.656 ± 0.045	0.641 ± 0.045	0.662 ± 0.048	0.632 ± 0.050

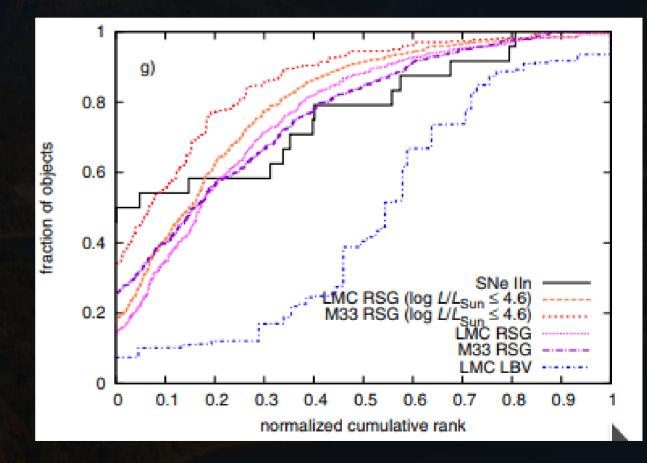


Spatial distributions of massive stars AND spatial distribution of SN types w.r.t. H-alpha (Kangas+17)


- SNII explosion sites best matched with RSG/YSG and SG Be stars
- Some possibility that faster decliners more closely follow YSGs...

Spatial distributions of massive stars AND spatial distribution of SN types w.r.t. H-alpha (Kangas+17)

• SNeIIb and SNeIb explosion sites best matched with RSG/YSGs


Spatial distributions of massive stars AND spatial distribution of SN types w.r.t. H-alpha (Kangas+17)

• SNeIc explosion sites best matched with WR (WN) stars

Spatial distributions of massive stars AND spatial distribution of SN types w.r.t. H-alpha (Kangas+17)

- SNeIIn explosion sites *inconsistent* with LBV population
- Best matched with RSGs

Environment constraints on CC SN progenitor stellar types:

1) Consistently through different studies SNIc appear to be more associated with star formation than other types

- SNIc best matched with WR stars w.r.t. H-alpha emission

SNIc arise from more massive progenitors than other CC types
SNII+SNIIb+Ib show similar association to star formation

- all have explosion sites best matched with RSG/YSG stars

- suggests similar (low) mass progenitors for SNII/IIb/Ib

- suggests most IIb and Ib come from binary systems

3) SNIIn show ~low association to star formation - explosion sites best matched with RSG progenitors

- explosion sites inconsistent with LBV progenitors

"Significant differences in the estimated ⁵⁶Ni masses of SNeII and stripped-envelope events (SE-SNe)" (Anderson in prep.)

Two basic methods for calculating ⁵⁶Ni masses for CCSNe:

1) tail luminosity (SNeII)

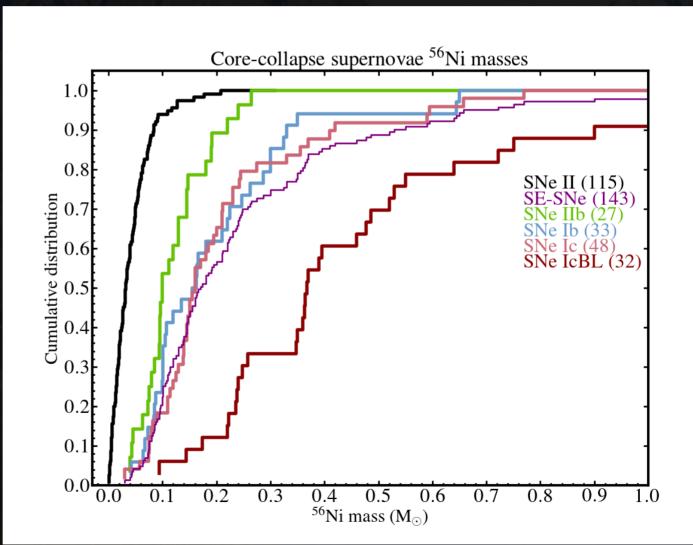
2) Arnett's rule (SE-SNe)

A meta-analysis of literature ⁵⁶Ni masses

An ADS search for 'supernova'+'type II'/'type IIb'/'type Ib'/'type Ic'...

• all ⁵⁶Ni masses: models, observations

• multiple values for the same SN averaged (no preference for method)


- different bolometric corrections
- different Av corrections
- different assumed distances

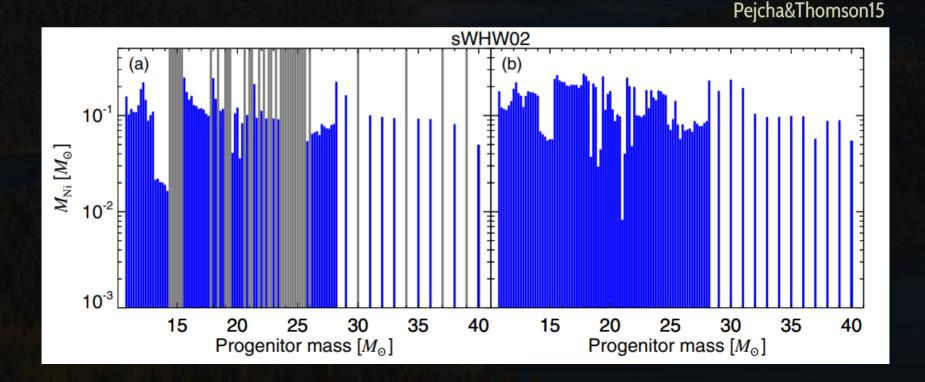
SNII = 115 values SNIIb = 27 SNIb = 33 SNIc = 48 SNIc-BL = 32 (SE-SNe = 143)

CC SN observed/estimated ⁵⁶Ni distributions

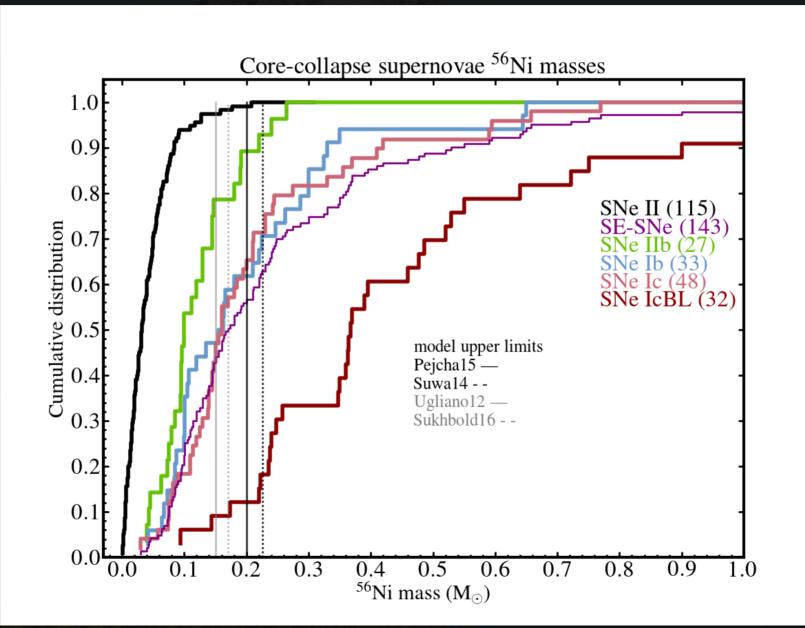
SNII median = 0.032

SNIIb = 0.100 SNIb = 0.163 SNIc = 0.160 SNIcBL = 0.369 SE-SNe = 0.174

SE-SNe clearly have higher estimated ⁵⁶Ni masses than SNII

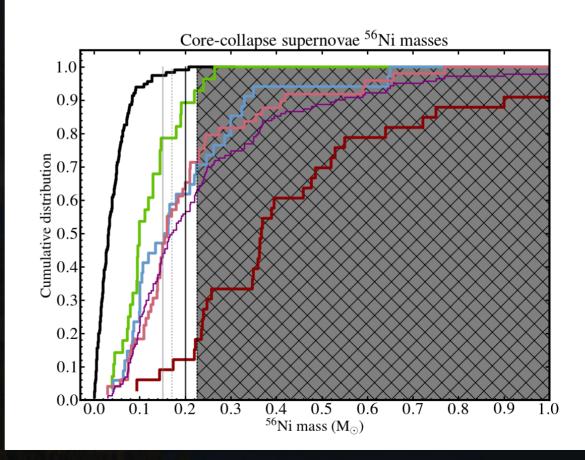

- Highly significant statistical ⁵⁶Ni mass differences between SNII and all other CC (SE-SN) types
- Zero SE-SN values lower than 0.03Msun, while 52 (~50%) SNII lower than such values
- SE-SNe have some very high estimated values! Highest SNII = 0.36Msun, SNIIb = 0.28Msun; SNIb = 0.92Msun(!); SNIc = 0.84Msun; SNIcBL = 2.4Msun!!! (SNIa estimates are ~0.6Msun)

Possible implications and caveats


- Significantly higher ⁵⁶Ni masses for SE-SNe than SNII would appear inconsistent with even roughly similar progenitor masses
 - higher ⁵⁶Ni mass requires higher core \rightarrow higher ZAMS mass (?)
- Would we find SE-SNe that explode with <0.01 Msun ⁵⁶Ni???
 → (very) faint
- The largest ⁵⁶Ni masses seem too high to be realistic
- There are a number of SE-SN values that do overlap with the SNII distribution
- Are extinction corrections correct?

From models the highest ⁵⁶Ni mass is only 0.226Msun!

- Only so much material available at sufficiently high densities to produce ⁵⁶Ni, even in high-mass progenitors
- A number of studies have investigated 'explodability' of massive stars, and their subsequent nucleosynthesis → ⁵⁶Ni masses
 - different progenitor structures
 - different explosion energies, etc...



~35 % of SE-SNe have estimated ⁵⁶Ni masses above explosionmodel limit! (...or >50% w.r.t. Ugliano+...)

35 % of SE-SNe have estimated ⁵⁶Ni masses that are not within range of explosion models

- 90% SNIIb within allowed range
- ~70% of SNIb and SNIc within allowed range
- SNIcBL: >80% NOT within allowed range
- ~100% of SNII within allowed range

Implications/explanations

• IF real, results imply significant differences in progenitor structures for SE-SNe as compared to SNeII

- (*much*) more massive progenitors maybe needed

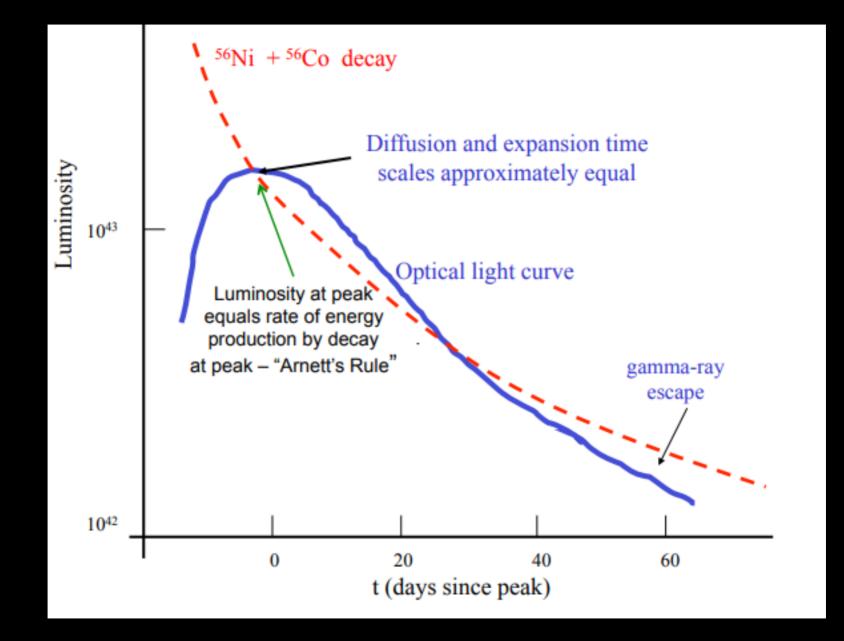
- inconsistent with most other work (even that which suggests some level of progenitor mass difference)
- A significant fraction of SE-SN derived ⁵⁶Ni masses are higher than those predicted by explosion models

- progenitor structures are wrong?

- many/most SE-SNe NOT powered by ⁵⁶Ni?

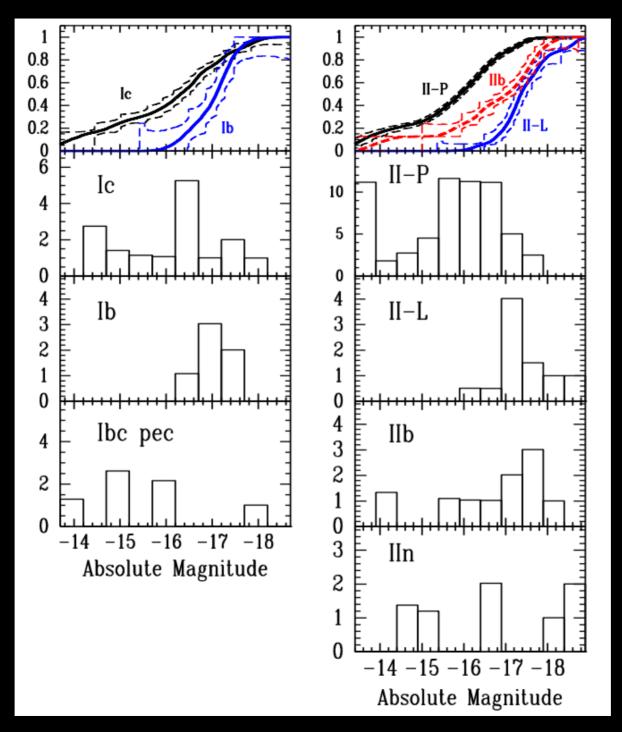
• Explosion models wrong?(?)

• Arnett's rule is too simplified?


Summary

Now many independent methods for constraining CC SN progenitor masses. Some inconsistencies... But:

SNIc on average arise from higher masses than rest of CC SN
 SNIIb, Ib appear to come from similar masses to SNII, suggesting that the majority arise from binary systems
 The majority of SNIIn appear to come from similar masses to SNII, BUT a number of obvious counterexamples


Clear differences between SNII and SE-SN ⁵⁶Ni masses that are rarely discussed in the literature. Either:

Significant differences in progenitor structures... or
 Estimates of ⁵⁶Ni masses are wrong... or
 Many SE-SNe have a different/additional power source?

Specific ⁵⁶Ni values

```
SN1987A = 0.072Msun
SN1999em = 0.044
SN2005cs = 0.004
SN2013ej = 0.018
SN1993| = 0.112
SN2016gkg = 0.085
SN1984L = 0.645
SN2008D = 0.088
iPTF13bvn = 0.073
SN1994I = 0.075
SN2011bm = 0.657
SN1998bw = 0.583
```

