Wide-Field SN Surveys: New Regimes of Transient Science

Maria R. Drout University of Toronto; Carnegie Observatories Image Credit: Robin Dienel/Carnegie Observatories

Wide-Field Transient Searches

SuperNova Legacy Survey

SNLS

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Current/Upcoming Surveys

Wide-Field/All Sky

ASAS-SN PS1 Dark Energy Survey ATLAS ZTF BlackGEM* LSST* Boutique/Specialized Science

DLT40 KMTNet SN Survey HiTs Deeper, Wider, Faster K2/TESS Survey for Nothing

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Key Question 1:

What are the observed populations, intrinsic rates, and nature of "peculiar" explosive transients present in the universe?

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Key Question 1:

What are the observed populations, intrinsic rates, and nature of "peculiar" explosive transients present in the universe?

"Peculiar" Transients: Observations

Observed Transient	Why "peculiar"
Super-luminous SN	Intrinsically rare; prefer low-mass hosts
Nuclear flares	rare, image subtraction
Luminous Blue Transients	rapid
Type Iax SN	faint, somewhat rapid
Calcium-rich Transients	faint, somewhat rapid
Rapidly Declining Type I SN	faint, rapid
Intermediate luminosity optical transients (ILOTs)	very faint
Luminous red novae	very faint
Long-lived Type II	Rare. Bias?

Probe different regimes of progenitor systems and explosion mechanisms. Unique means to study uncertain stages of stellar evolution and channels for stellar death.

Probe different regimes of progenitor systems and explosion mechanisms. Unique means to study uncertain stages of stellar evolution and channels for stellar death.

Probe different regimes of progenitor systems and explosion mechanisms. Unique means to study uncertain stages of stellar evolution and channels for stellar death.

Probe different regimes of progenitor systems and explosion mechanisms. Unique means to study uncertain stages of stellar evolution and channels for stellar death.

Binary system	Outcomes with deflagration- detonation-transition	Outcomes without deflagration- detonation-transition	
He-rich WD + C/O WD < 0.8 Msol	Shell detonation . Ia supernova (?)		
He-rich WD + C/O WD > 0.8 Msol	Double detonation SN Ia		
Low-mass He-burning star + C/O WD < 0.8 Msol	Shell DDT . Ia supernova		
Low-mass He-burning star + C/O WD > 0.8 Msol	Shell DDT Double detonation SN Iab??	Shell deflagration	
High-mass He-burning star + C/O WD < 0.8 Msol	Shell DDT . Ia supernova	. Ia supernova	
High-mass He-burning star + intermediate-mass C/O WD	Shell DDT Double detonation SN Ia		
High-mass He-burning star + C/O WD > 1.0 Msol	Core DDT SN Ia	Core deflagration SN Iax	

Table Courtesy of Ken Shen

Peculiar Transients: Theory

Theoretical Transients	Science Case(s)
Tidal Disruption Events	quiescent SMBHs; jet physics
Kilonovae	Gravitational waves; r-process
Off-axis GRB afterglows	Rates, energy scale; jet structure
Accretion Induced Collapse	WD physics
Helium shell detonation (.Ia)	WD accretion, nuclear physics
Failed supernovae	BH formation; feedback
Ejection of a stellar envelope	Mass loss; common-envelope
Mergers	Merger rates; common-envelop efficiency
Pair instability SN	Explosion mechanism
•••	

- What are the observed populations?
- What is their nature?
- What are their intrinsic rates?

What are the implications?

- Stellar evolution, binary interactions, mass loss, ...
- Physics of compact objects, stellar explosions, ...

SN Phase Space

SN Phase Space

Rapidly-Declining Type I SN

Rapidly-Declining Type I SN

Drout et al. (2013)

Rapidly-Declining Type I SN SN2005ek, SN2010X

Spectroscopic modeling finds an ejecta dominated by oxygen. (Drout et al. 2013, Tauris et al. 2013, Kleiser et al. 2014)

Rapidly-Declining Type I SN Possibility 1. An Ultra-stripped SN

Image courtesy of T. Tauris

Rapidly-Declining Type I SN Possibility 1. An Ultra-stripped SN

Secondary explosion leading to a compact binary can be ultra-stripped. (Tauris+2013, Tauris+2015, Suwa+2015, Moriya+2017, ...)

Rapidly-Declining Type I SN Possibility 2. Explosions of helium giants lacking ⁵⁶Ni

Kleiser & Kasen 2014; Kleiser et al. 2018a,b

Rapidly-Declining Type I SN General Lack of Observational Information

- 2-3 known events
- Rates very uncertain (1% of Type Ia rate?)
- Almost no late-time or pre-peak data.

Mej = 0.2 Msun $Ek = 2x10^{50} erg$

Extended envelope: 0.01 Msun 500 Rsun

Mej = 0.2 Msun $Ek = 2x10^{50} erg$

Extended envelope: 0.01 Msun 500 Rsun

> <u>He-rich shell:</u> 0.01 Msun 9000 Rsun

He star (stable/unstable) RLO. Most He is ejected from the system Stripped He star + NS Intense mass loss leads to expanding envelope. Mej = 0.2 Msun $Ek = 2x10^{50} erg$

<u>Extended envelope:</u> 0.01 Msun 500 Rsun

> <u>He-rich shell:</u> 0.01 Msun 9000 Rsun

 \longrightarrow

iPTF 14gqr: Ultra-stripped SN inside He-rich envelope Double NS system

SN Phase Space

Drout, M. R. et al. (2014)

Sample Properties:

- Luminous
- Blue Colors
- Expanding & Cooling Photosphere
- Spectra Dominated by Continua
- Star forming host galaxies

Sample Properties:

- Luminous
- Blue Colors
- Expanding & Cooling Photosphere
- Spectra Dominated by Continua
- Star forming host galaxies

Implications/Progenitors:

- Shock break out/cooling from extended stellar envelope or dense wind
- Winds/outflows from compact objects (e.g. Kashiyama & Quataert 2015)

Drout, M. R. et al. (2014)

Luminous and Blue Transients Detection Efficiency & Intrinsic Rates

- 1. PTF09uj (Type IIn; Ofek+2010)
- 2. SN1999cq (Type Ibn; Matheson+2000)
- 3. SN2015U (Type Ibn; Shivvers+2016)
- 4. LSQ15ccw (Type Ibn; Pastorello+2015)
- 5. Rapidly-Rising Transients in the SN-SLSN gap (Arcavi+2016)
- 6. Rapidly-Rising Transients from Subaru Hyper Suprime-Cam (Tanaka+2016)
- 7. iPTF16asu (Type Ic-BL; Whitesides+2017)
- 8. Kepler transient KSN2015K (Rest et al. 2018)
- 9. HiTSs transient, CSS transient, LSQ transient, ZTF object
- 10. DES Sample (Pursiainen et al. 2018)
- 11. AT2018cow (everyone...2018)

- 1. PTF09uj (Type IIn; Ofek+2010)
- 2. SN1999cq (Type Ibn; Matheson+2000)
- 3. SN2015U (Type Ibn; Shivvers+2016)
- 4. LSQ15ccw (Type Ibn; Pastorello+2015)
- 5. Rapidly-Rising Transients in the SN-SLSN gap (Arcavi+2016)
- 6. Rapidly-Rising Transients from Subaru Hyper Suprime-Cam (Tanaka+2016)
- 7. iPTF16asu (Type Ic-BL; Whitesides+2017)
- 8. Kepler transient KSN2015K (Rest et al. 2018)
- 9. HiTSs transient, CSS transient, LSQ transient, ZTF object
- 10. DES Sample (Pursiainen et al. 2018)
- 11. AT2018cow (everyone...2018)

Numbers

- 1. PTF09uj (Type IIn; Ofek+2010)
- 2. SN1999cq (Type Ibn; Matheson+2000)
- 3. SN2015U (Type Ibn; Shivvers+2016)
- 4. LSQ15ccw (Type Ibn; Pastorello+2015)
- 5. Rapidly-Rising Transients in the SN-SLSN gap (Arcavi+2016)
- 6. Rapidly-Rising Transients from Subaru Hyper Suprime-Cam (Tanaka+2016)
- 7. iPTF16asu (Type Ic-BL; Whitesides+2017)
- 8. Kepler transient KSN2015K (Rest et al. 2018)
- 9. HiTSs transient, CSS transient, LSQ transient, ZTF object
- 10. DES Sample (Pursiainen et al. 2018)
- 11. AT2018cow (everyone...2018)

Mass Loss/Interaction

- 1. PTF09uj (Type IIn; Ofek+2010)
- 2. SN1999cq (Type Ibn; Matheson+2000)
- 3. SN2015U (Type Ibn; Shivvers+2016)
- 4. LSQ15ccw (Type Ibn; Pastorello+2015)
- 5. Rapidly-Rising Transients in the SN-SLSN gap (Arcavi+2016)
- 6. Rapidly-Rising Transients from Subaru Hyper Suprime-Cam (Tanaka+2016)
- 7. iPTF16asu (Type Ic-BL; Whitesides+2017)
- 8. Kepler transient KSN2015K (Rest et al. 2018)
- 9. HiTSs transient, CSS transient, LSQ transient, ZTF object
- 10. DES Sample (Pursiainen et al. 2018)
- 11. AT2018cow (everyone...2018)

SN/Engines

SN/Engines

- 1. PTF09uj (Type IIn; Ofek+2010)
- 2. SN1999cq (Type Ibn; Matheson+2000)
- 3. SN2015U (Type Ibn; Shivvers+2016)
- 4. LSQ15ccw (Type Ibn; Pastorello+2015)
- 5. Rapidly-Rising Transients in the SN-SLSN gap (Arcavi+2016)
- 6. Rapidly-Rising Transients from Subaru Hyper Suprime-Cam (Tanaka+2016)
- 7. iPTF16asu (Type Ic-BL; Whitesides+2017)
- 8. Kepler transient KSN2015K (Rest et al. 2018)
- 9. HiTSs transient, CSS transient, LSQ transient, ZTF object
- 10. DES Sample (Pursiainen et al. 2018)
- 11. AT2018cow (everyone...2018)

AT2018cow The Best Observed Case

Margutti+2018

AT2018cow The Best Observed Case

AT2018cow The Best Observed Case

Engine

• CSM

• Hydrogen/helium

Table 2. Central X-ray "Engine" Models for AT 2018
--

Model	Ejecta Mass/Velocity	Engine Timescale	CSM?	He?	H?	Reference	
NS-NS Merger Magnetar	Х	\checkmark	Х	Х	Х	1	
WD-NS Merger	\checkmark	\checkmark	Х	Х	Х	2	
IMBH TDE	\checkmark	Maybe [†]	Х	\checkmark	\checkmark	3	
Stripped-Envelope SN + Magnetar/BH	\checkmark	\checkmark	\checkmark	Maybe	Х	4	
Electron Capture SN + Magnetar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	5	
Blue Supergiant Failed SN + BH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	6	
SN + Embedded CSM Interaction	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	7	

- 1. PTF09uj (Type IIn; Ofek+2010)
- 2. SN1999cq (Type Ibn; Matheson+2000)
- 3. SN2015U (Type Ibn; Shivvers+2016)
- 4. LSQ15ccw (Type Ibn; Pastorello+2015)
- 5. Rapidly-Rising Transients in the SN-SLSN gap (Arcavi+2016)
- 6. Rapidly-Rising Transients from Subaru Hyper Suprime-Cam (Tanaka+2016)
- 7. iPTF16asu (Type Ic-BL; Whitesides+2017)
- 8. Kepler transient KSN2015K (Rest et al. 2018)
- 9. HiTSs transient, CSS transient, LSQ transient, ZTF object
- 10. DES Sample (Pursiainen et al. 2018)
- 11. AT2018cow (everyone...2018)

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Key Question 1:

What are the observed populations, intrinsic rates, and nature of "peculiar" explosive transients present in the universe?

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Key Question 2: What is the behavior of massive stars immediately preceding core-collapse?

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Key Question 2: What is the behavior of massive stars immediately preceding core-collapse?

Pre-Supernova Mass Loss

Enhanced Mass Loss in "Normal SN" Flash Spectroscopy

Gal-Yam et al. 2014.

Enhanced Mass Loss in "Normal SN" Early Light Curves

Morozova, Piro, & Valenti 2017, 2018

Enhanced Mass Loss in "Normal SN" Early Observations couple with radio/X-ray

Yaron et al. 2017.

Enhanced Mass Loss in "Normal SN" Early Observations couple with radio/X-ray

What is the prevalence and extent of enhanced pre-SN mass loss?

Yaron et al. 2017.

How Ubiquitous?

-20

Light Curve Modeling:

Flash Spectroscopy:

Morozova, Piro, & Valenti 2018 see also Asfari, Drout et al., 2018 Kazov et al. 2016 see also Hozzeinzadeh et al. 2018

Plethora of SN Types

Long-GRBs; Type Ibn...

<u>Tangential/Technical Open Question:</u> How well do we understand early SN light curves? How accurately can we pull information from them?

Why does this matter? Pre-explosion structure of the star

Pre-explosion spin rate of the stellar core

Quataert & Shiode 2012; Shiode & Quataert 2014; Smith & Arnett 2014; Fuller et al. 2015; Fuller 2017, Fuller & Ro 2018

Why does this matter?

Pre-explosion structure of the star Pre-explosion spin rate of the stellar core

Quataert & Shiode 2012; Shiode & Quataert 2014; Smith & Arnett 2014; Fuller et al. 2015; Fuller 2017, Fuller & Ro 2018

Why does this matter?

T. Sukhbold et al.

Testable Predictions

MJD-245500 (days)

Kochanek et al. (2017)

Fuller (2017)

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Key Question(s) 3: What stars explode (or not) as supernova? How does this, and their explosion properties, change with environment?

- 1. Identification of Large Samples of Known Classes of SN
- 2. Discovery of Intrinsically Rare Transients
- 3. Opening of New Regimes for Transients

Key Question(s) 3: What stars explode (or not) as supernova? How does this, and their explosion properties, change with environment?

T. Sukhbold et al.

Observational Lack of High Mass Progenitors

Eldridge, et al. (2013)

Bulk Statistics Probes of the Underlying Stellar Population

Bulk Statistics Delay – Time Distribution

Zapartas et al. (2017)

Unsolved Problems In Time Domain Astronomy

What are the observed populations of "peculiar" explosive transients present in the universe?

What is the behavior of massive stars immediately preceding core-collapse?

What stars explode (or not) as supernova?