Superluminous supernovae and their origin

Takashi Moriya National Astronomical Observatory of Japan

Core-collapse SNe

Superluminous supernovae (SLSNe)

- more than ~ 10 times brighter than other core-collapse SNe
 - often emit more than 1e51 erg just by radiation

Two spectroscopic types

- Type II (with hydrogen)
- Type I (without hydrogen)

Type II SLSNe

- most of them are Type IIn (a few exceptions)
 - 'n' from narrow

Type IIn SNe

- outflow with ~ 100 km/s
 - too slow to be from SN ejecta (~ 10000 km/s)

Explosions with dense circumstellar media (CSM)

around 10 Msun of dense CSM needed near the progenitor

٠

mass-loss rate ~ 0.1 Msun/yr or even higher — how?

Type I SLSNe

Type I SLSNe

Nicholl et al. (2016)

Late-phase spectra: similar to SNe with GRBs

Jerkstrand et al. (2017)

How do they become superluminous?

- large production of 56Ni for SLSNe?
 - more than 5 Msun of 56Ni required
 - light curve decline is often consistent with the 56Co decay
 - rapidly declining SLSNe are inconsistent another model required

56Ni synthesis – energetic core-collapse SNe

- energetic explosion of massive core-collapse SN progenitor
 - ~ 40 Msun C+O star exploding with ~ 4e52 erg \rightarrow ~ 6 Msun of 56Ni

56Ni synthesis — pair-instability SNe

- pair-instability SNe
 - thermonuclear explosions of very massive stars
 - helium core mass between ~ 70 Msun and ~ 130 Msun

56Ni synthesis — pair-instability SNe

PISNe are inconsistent with SLSNe

Powering SLSNe without 56Ni

- rapidly declining SLSNe are NOT powered by the 56Ni decay
 - slowly declining SLSNe are not necessarily powered by 56Ni
- late-phase similarity to SNe associated with GRBs
 - SLSN center similar to those of long GRBs?
 - the existence of a central energy input?
- proposed central engines
 - magnetars
 - BH accretion
 - •

Magnetars

- efficient release of rotational energy of neutron stars (NSs)
 - rotational energy

$$E_{\rm rot} = \frac{1}{2} I_{\rm NS} \Omega^2 \simeq 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \text{ erg}$$

SLSNe emit ~ 1e51 erg -> a few ms

Magnetars

- efficient release of rotational energy of neutron stars (NSs)
 - rotational energy

$$E_{\rm rot} = \frac{1}{2} I_{\rm NS} \Omega^2 \simeq 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \text{ erg}$$

- SLSNe emit ~ 1e51 erg -> a few ms
- magnetic field
 - spin down caused by poloidal fields

$$t_m = \frac{6I_{\rm NS}c^3}{B_{\rm dipole}^2 R_{\rm NS}^6 \Omega^2} \simeq 5 \left(\frac{B_{\rm dipole}}{10^{14} \ G}\right)^{-2} \left(\frac{P}{1 \ {\rm ms}}\right)^2 \ {\rm days}$$

SLSN timescales: ~ 10 - 100 days → ~ 1e14 - 1e13 G

magnetar

Magnetars

- both LCs and spectra match
 - Mej ~ 5-10 Msun, Eej ~ 5e51 erg (e.g., Nicholl et al. 2017)

Fallback accretion

long lasting central accretion towards the central BH

Fallback accretion

Iong lasting central accretion towards the central BH

Fallback accretion

- long lasting central accretion towards the central BH
 - suggested by Dexter & Kasen (2013) but not investigated much

Total released energy at the center by fallback

- light curve fitting using MOSFiT
 - Bayesian parameter estimates using MCMC
 - based on the Arnett formula (Arnett 1980)
 - the same approach used for the magnetar model (Nicholl et al. '17)

Fallback accretion as the central power of SLSNe

- required energy to be released: 0.002 Msun c² 0.7 Msun c²
 - depending on the energy conversion efficiency from accretion to outflow, the enormous amount of mass accretion is required
 - if we adopt ~ 0.001 (estimated by Dexter & Kasen 2013),
 2 Msun 700 Msun need to be accreted
 - hard to be distinguished by light curves
 - spectra with little Fe group elements?
 - SLSNe tend to have strong Fe lines (e.g., Nicholl et al. 2018)

Central heating is not enough

Central heating is not enough

- LSQ14mo (Chen et al. 2017)
 - extra heating from outside?

• light echo (Lunnan et al. 2018), late-phase H emission (Yan et al. 2017)

Summary

- SLSNe new class of extremely luminous SNe
- SLSNe with hydrogen
 - mostly Type IIn CSM interaction is the power source
 - ~ 10 Msun of CSM required how?
- SLSNe without hydrogen
 - late-phase similarity to SNe associated with GRBs
 - 56Ni power is not likely in many cases
 - central heating source?
 - magnetar model working well smoking gun?
 - fallback accretion model requires too massive accretion
 - heating from outside is also needed