AT2018cow
A fast luminous relativistic transient

Antonio de Ugarte Postigo
(HETH/IAA-CSIC, Granada; DARK/NBI, Copenhagen)
Cow, what cow?

- Discovered by ATLAS as a likely foreground CV spatially coincident with a galaxy at 60 Mpc
- 59 ATels followed
- 6 papers already out:
 The cow: Discovery of a luminous, hot, and rapidly evolving transient
 X-ray Swift observations of SN 2018cow
 The fast, luminous ultraviolet transient AT2018cow: Extreme supernova, or disruption of a star by an intermediate-mass black hole?
 Swift spectra of AT2018cow: A white dwarf tidal disruption event?
 An embedded X-ray source shines through the aspherical AT2018cow: Revealing the inner workings of the most luminous fast-evolving optical transients
 AT2018cow: A luminous millimeter transient

...

?. Kann et al. in preparation
Discovery

- Discovered by ATLAS on June 16.44 UT (Smartt et al. 2018)
- Coincident with a galaxy at $z = 0.014$ (61 Mpc)
- Last non detection on June 15.13
- Estimated explosion on June 15.34 (Prentice et al. 2018)
- Rise to peak in ~3.5 days
- Peak at $g' = 13.40$
- Peak luminosity 4×10^{44} erg (Perley et al. 2018)
Discovery

- Discovered by ATLAS on June 16.44 UT (Smartt et al. 2018)
- Coincident with a galaxy at $z = 0.014$ (61 Mpc)
- Last non detection on June 15.13
- Estimated explosion on June 15.34 (Prentice et al. 2018)
- Rise to peak in ~ 3.5 days
- Peak at $g' = 13.40$
- Peak luminosity 4×10^{44} erg (Perley et al. 2018)
Our data

- **Spectroscopy**: GTC (15), X-shooter (3), Calar Alto (6) and NOT (5)

- **Photometry**: UVOT, GTC, VLT, HST, OSN, CAHA, WHT, Ondrejov

- **Millimeter**: NOEMA (9), ALMA (5)
Black body emission

- UV/Optical/NIR well described with a hot black body
- Temperature decreasing from 30,000 K to 12,000 K
- Radius decreased from 10^{15} to 10^{14} cm (70 to 7 AU)
Black body emission

- UV/Optical/NIR well described with a hot black body
- Temperature decreasing from 30 000 K to 12 000 K
- Radius decreased from 10^{15} to 10^{14} cm (70 to 7 AU)
Black body emission

- UV/Optical/NIR well described with a hot black body
- Temperature decreasing from 30,000 K to 12,000 K
- Radius decreased from 10^{15} to 10^{14} cm (70 to 7 AU)
Broad-band component

- Detection of X-ray emission (Rivera Sandoval, ATeIl#11737) with flaring episodes
- Detection of a bright mm counterpart (de Ugarte Postigo et al., ATeIl#11749)
- Are they linked?
- Spectral slopes don’t seem to match
- At late time, both decay in a similar way
Broad-band component

- Detection of X-ray emission (Rivera Sandoval, ATeI#11737) with flaring episodes
- Detection of a bright mm counterpart (de Ugarte Postigo et al., ATeI#11749)
- Are they linked?
- Spectral slopes don’t seem to match
- At late time, both decay in a similar way
A hard X-ray component was detected using NuSTAR and INTEGRAL (Margutti et al.).

Observations covering between 0.3 and 100 keV (also XRT + XMM).

Significant only during the first days.

Possible Fe K-alpha emission (typical in accretion disks and interacting SNe).

Excess at $E > 10$ keV (Compton hump?)
Spectral evolution

- Very broad features at early times (first 10 days)
- Emission features appear at day 13, strengthen until day 42, disappear at day 50
- Broad [CI] feature developing at 8800 Å between 40 and 70 days
Host galaxy

- Star forming barred spiral:
 - Mag = -18.66
 - Age = 2.00$^{+0.07}_{-0.36}$ Gyr
 - Mass = $1.51^{+0.15}_{-0.16} \times 10^9$ M\odot
 - SFR = $1.19^{+0.29}_{-0.11}$ M\odot/yr
 - Z \sim 70% Solar (shallow gradient)
- HST UV observation
- CO detection
Host galaxy

- Star forming barred spiral:
 - Mag = -18.66
 - Age = 2.00 - 0.36\(^{+0.07}\) Gyr
 - Mass = 1.51\(^{-0.16}\)^{+0.15} \times 10^9 M_\odot
 - SFR = 1.19\(^{-0.11}\)^{+0.29} M_\odot/yr
 - Z ~ 70% Solar (shallow gradient)
- HST UV observation
- CO detection
Host galaxy

- Star forming barred spiral:
 - Mag = -18.66
 - Age = 2.00\(^{+0.07}_{-0.36}\) Gyr
 - Mass = 1.51\(^{+0.15}_{-0.16}\) \times 10^9 \text{M}_\odot
 - SFR = 1.19\(^{+0.29}_{-0.11}\) \text{M}_\odot/yr
 - Z \sim 70\% \text{Solar} (shallow gradient)
- HST UV observation
- CO detection
Host galaxy

- Star forming barred spiral:
 - Mag = -18.66
 - Age = 2.00 - 0.36$^{+0.07}_{-0.36}$ Gyr
 - Mass = 1.51$^{+0.15}_{-0.16} \times 10^9$ M$_\odot$
 - SFR = 1.19$^{+0.29}_{-0.11}$ M$_\odot$/yr
 - Z ~ 70% Solar (shallow gradient)
- HST UV observation
- CO detection
Host galaxy

- Star forming barred spiral:
 - Mag = -18.66
 - Age = 2.00^{-0.36}_{0.07} Gyr
 - Mass = 1.51^{-0.16}_{0.15} \times 10^9 M_{\odot}
 - SFR = 1.19^{-0.11}_{0.29} M_{\odot}/yr
 - Z \sim 70\% Solar (shallow gradient)
- HST UV observation
- CO detection
Host galaxy

- Star forming barred spiral:
 - Mag = -18.66
 - Age = 2.00\(^{\pm}0.36\) Gyr
 - Mass = 1.51\(^{\pm}0.15\) x 10\(^9\) M\(_\odot\)
 - SFR = 1.19\(^{\pm}0.29\) M\(_\odot\)/yr
 - Z \sim 70\% Solar (shallow gradient)
- HST UV observation
- CO detection
Comparisons: Optical

- Extreme peak luminosity (like SLSNe)
- Very fast rise time
- Very fast decay (not compatible with 56Ni powered emission)
- Observed emission dominated by black body
Comparisons: X-ray

- Consistent in luminosity with GRB afterglows
- But late decay is faster than any GRB
- Brighter than SNe
Comparisons: Radio

- Similar to low luminosity GRBs, both in radio and millimetre wavelengths.
- More luminous than SNe (especially in millimetre)

Margutti et al. 2018
Progenitor models

- Prentice et al.: Magnetar in a binary neutron star merger
- Rivera Sandoval et al.: Some type of SNe ejecta interacting with an LBV-like ejecta
- Perley et al.: Relativistic jet within a fallback supernova, Disruption or a star by an intermediate-mass black hole
- Kuin et al.: White dwarf tidal disruption event
- Ho et al.: Energetic shock expanding into a dense medium
- Margutti et al.: SNe from low-mass H-rich stars, Failed explosions from blue supergiants
Progenitor models

- *Prentice et al.:
 - Magnetar in a binary neutron star merger
- *Rivera Sandoval et al.:
 - Some type of SNe ejecta interacting with an LBV-like ejecta
- *Perley et al.:
 - Relativistic jet within a fallback supernova
 - Disruption or a star by an intermediate-mass black hole
- *Kuin et al.:
 - White dwarf tidal disruption event
- *Ho et al.:
 - Energetic shock expanding into a dense medium
- *Margutti et al.:
 - SNe from low-mass H-rich stars
 - Failed explosions from blue supergiants
Summary

• Rise time ~3.5 d
• Very fast ejecta (~0.1c)
• Black body that cools from 30 000 to 10 000 K and shrinks from 10^{15} to 10^{14} cm
• Spectral features: Early broad features, He/H emission lines, 8800 Å feature.
• Radio and millimetre emission
• X-ray emission, including flaring
• Hard X-ray component
• In a star forming galaxy, within a star forming region, with abundant CO