Massive stars & SNe, Bariloche, Nov. 8 2018

GRB 171205A cocoon signatures in an early GRB-SN hosted by a grand-design spiral

Christina Thöne (IAA-CSIC/HETH) on behalf of Luca Izzo (IAA/HETH)

based on: L. Izzo, A. de Ugarte Postigo, K. Maeda, C. C. Thöne, D.A. Kann et al., Nature in press and: Thöne et al. in prep & de Ugarte Postigo et al. in prep. Cano et al. 2016, de Ugarte et al. 2018

Long GRBs & BL-Ic SNe

Early components in GRB-SNe

- X-ray black-body components in GRBs (e.g. Starling et al. 2012, Friis et al. 2013)
- The curious cases of GRB 060218 and GRB101225A (the "Christmas burst") → no early spectra!

Early components in GRB-SNe

- X-ray black-body components in GRBs (e.g. Starling et al. 2012, Friis et al. 2013)
- The curious cases of GRB 060218 and GRB101225A (the ,,Christmas burst") → no early spectra!

GRB 171205A

- T₉₀=190s
- D=163 Mpc (3rd closest)
- low-luminosity GRB (L_{iso}=3x10⁴⁷ erg/s) very faint afterglow
- M_V(SN)=-18.4 mag (second faintest GRB-SN)
- Massive host (log M=10.1 M_☉), grand-design spiral galaxy (first time for a low-z GRB!)
- Extensive spectral follow-up campaign with GTC + X-shooter (0d to 180d post GRB)

system

magnitude in the

Corrected R

An unusual light curve

• Early bump in light curve

An early BB emission

• Early bump in light curve, consistent with evolving BB starting in X-rays

Extreme early velocity features

- First X-shooter spectrum at 1.5h, additional continuum emission visible
- Very broad SN features in spectra at 0.9d
 v~115,000 km/s, FWHM ~35,000 km/s
 (based on Call triplet and Sill 6355, maybe also Fell)

Cheth wstituti de Astropisca GSIC GSIC HAA

Modeling the spectral evolution

- Spectral synthesis modeling with TARDIS, model CO138 (K. Maeda)
- Two component model: early/outer/fast late/inner/slower component
- Fast comp. has "inverted" composition from expelled core material
- M_{ej} : cocoon > 55,000 km/s: 0.13 M_o (0.001 M_o above 100,000 km/s) total: 4.9 M_o, 0.18 M_o ⁵⁶Ni $E_{kin} = 2.4 \times 10^{52} \text{ erg}$
- Complete SN modeling needed (Kann et al. in prep.)

- First clear evidence of a cocoon from the jet-star interaction (e.g. Nakar et al. 2016), now very fashion in NS-NS merger models
- Jet breaks out of star → Fe-peak rich material transported outwards, high velocities, early hot BB emission → weak afterglow (X-rays) → BL-Ic SN
- Low-Luminosity GRBs = "normal" GRBs with stronger jet interaction? Explanation for other early BB emissions (e.g. GRB 060218)? And/or different progenitors for ultra-long GRBs?? (Needs more study, Kann et al. in prep.)

high-v material . early bump

SN

Nakar & Piran 2016

Ih MUSE barred spiral host with GRB in HII region in the outskirts

Ih MUSE barred spiral host with GRB in HII region in the outskirts

Ih MUSE barred spiral host with GRB in HII region in the outskirts

- Barred spiral, GRB in HII region in spiral arm
- star-forming "ring of pearls"
- high ionization region, I2+log(O/H)~8.45, shallow Z-gradient

- Barred spiral, GRB in HII region in spiral arm
- Regular velocity field
- Rather average SF spiral, GRB not at special position —> why here??

The first resolved CO maps ...

4.8h with ALMA at 0.2" resolution

-1.2e+02 -90 -60 -30 0.15 30 60 90 1.2e+02

CO(1-0)

Frequency (Hz)

1.115•10¹¹

1.120•10¹¹

The first resolved CO maps ...

0.06 4.8h with ALMA at 0.2" resolution 0.05 Maximum Flux Gaussian Peak Flux 0.04 Flux density (Jy) 0.03 0.02 0.01 0.00 1.105•10¹¹ 1.110•10¹¹ Gaussian Sigma Gaussian Velocity

-1.2e+02 -90 -60 -30 0.15 30 60 90 1.2e+02

... and a curious HI discovery

Conclusions

- Earliest GRB-SN spectrum ever showing very broad features
- Material from GRB jet-cocoon observed for the first time
- Fortunate case (weak AG, low z..?) or are there more?
- Large follow-up: new ,,standard" for GRB-SNe?
- Interesting spiral host with lots of data (IFU, CO, HI)
- Can gas fueling via interaction explain the unusual host??