

Kilonovae as cosmic foundries of heavy elements

Elena Pian

INAF－Astrophysics and Space Science Observatory，Bologna，Italy
Collaborators：M．Tanaka，J．Selsing，P．Mazzali，E． Cappellaro et al．

A double neutron star merger is expected to produce:

1) a GW signal at $\sim 1-1000 \mathrm{~Hz}$ (nearly isotropic)
2) a short GRB (highly directional and anisotropic)
3) r-process nucleosynthesis (nearly isotropic)

Lattimer \& Schramm 1974; Eichler et al. 1989; Li \& Paczynski 1998

Cumulative distribution of projected offsets of various explosions with respect to their host centers

Jet-Supernova Models as r-process Sites?

- MHD-driven polar "jets"could sweep out n-rich matter.
- Requires extremely fast matter ejection, extremely rapid rotation and extremely strong magnetic fields in pre-collapse stellar cores.
- Should be very rare event; maybe 1 of 1000 stellar core collapses?

Winteler et al., ApJL 750 (2012) L22

Courtesy: Th. Janka, 2016

Jet-Supernova Models as r-process Sites?

BUT:

- MHD-driven polar "jets" in 3D develop kink instability.
- Assumed initial conditions not supported by stellar pre-collapse models.
- Dynamical scenario does not provide environment for robust r-process.

Mösta et al., ApJL 785 (2014) L29

Time since GRB 130603 B (d)

Short GRB130603B

 ($\mathrm{z}=0.356$)
Kilonova:

Ejection of r-process material from a NS merger (0.01-0.1 Mo) (Barnes \& Kasen 2013)
$M_{H} \approx-15$
$M_{R} \approx-13$

Tanvir et al. 2013;
Berger et al. 2013

GW170817 and GRB170817A

The short GRB170817A lags GW signal by 1.7s: is this timescale related to the engine or to the plasma outflow?

Abbott et al. 2017;
Savchenko et al. 2017;
Fermi Collaboration 2017

Search for GW170817 optical counterpart: GW error regions and Swope 1m pointings

Comparison of Swope discovery image with archival HST image

| NGC 4993 (40 Mpc) | A | SSS17a (AT2017gfo) |
| :---: | :---: | :---: | :---: |

Optical and near-infrared light curves of GW170817 / AT2017gfo

AT2017gfo evolves much more rapidly than any supernova

ESO VLT X-Shooter spectral sequence of kilonova GW170817

Pian et al. 2017; Smartt et al. 2017

Periodic table of elements

s- and r-Process Nucleosynthesis

Solar system abundances of heavy elements produced by r-process and s process neutron capture.

Courtesy: K.-L. Kratz

Receding photosphere: P-Cygni profile of absorption lines

Typical spectra of Stripped-envelope core-collapse SNe

Pian \& Mazzali 2017

Geometry of 3-component model for kilonova and resulting spectra

$$
M_{e j} \sim 0.03
$$

Tanaka et al. 2017, Utsumi et al. 2017

Kilonova 3-component model for AT2017gfo: ejecta mass is 0.03-0.05 solar masses

An example of a _good_ spectral fit (SN2004eo)

Magellan spectral sequence of AT2017gfo

Early spectra set a constraint on initial photospheric speed

Shappee, Simon, Drout, Piro, Morrell et al. 2017

GRB170817A: multiwavelength LCs and emission models.

A structured off-axis jet or a quasi-isotropic outflow are preferred

Xie, Zrake, MacFadyen 2018

What is the remnant of the GW170817 merger?

Piro et al. 2018

Conclusions

Optical/infrared emission from AT2017gfo is the first direct proof that neutron star mergers are r-process factories.

The preliminary models require an ejecta mass of 0.03-0.05 Msun, and more than one kilonova component, with different proportions of species (lanthanide-rich vs lanthanide-free).

More realistic atomic models and opacities are necessary, to be used with density structure profiles, nuclear reaction networks and radiative transport codes.

Late-epoch X-ray flare may contain precious information on remnant.
Study of NS EoS can be addressed with joint GW and EM information: dynamical ejecta should be larger for more asymmetric mergers (i.e. with bigger mass ratios); moreover larger remnant mass implies lower ejecta. On the other hand, it's not clear how ejecta mass depends on EoS.

