Some Type Ibn supernovae are not from massive stars

Andy Howell

Las Cumbres Observatory University of California, Santa Barbara

Griffin Hosseinzadeh

Previously, Las Cumbres / UCSB Now at Harvard / CfA

GLOBAL TELESCOPE NETWORK

0.4m

2.0m

1.0m

Global Supernova Project

Led by LCO - PI: Howell

150+ members of the worldwide SN community working together. Members from every continent.

More than halfway to goal of getting unprecedented data on 900+ SNe with well sampled light curves and spectra over 6 years.

Creating tools and incentives for scientists to work together, share data.

Feeder surveys

PTF/iPTF/ZTF

Pan-STARRS

(e)PESSTO

La Silla-Quest

ASAS-SN

Catalina Sky Survey

MASTER

OGLE

KAIT

ATLAS

Gaia

KMTNet

Sky mapper

DLT40

KMTNet

BlackGEM

SNe IIn have narrow lines of hydrogen, SNe Ibn have no hydrogen, but have narrow lines of helium.

From Nathan Smith's IIn/Ibn article in the Handbook of Supernovae

Inferred circumstellar material parameters around SNe IIn/Ibn. From Nathan Smith's IIn/Ibn article in the Handbook of Supernovae

Hosseinzadeh et al. 2017

Added 6 SNe lbc to bring total known to 22.

SNe lbc fall into two classes based on early spectra: those with narrow He P-Cygni profiles, and those with narrow He emission.

PS1-12sk is a Ibn that looks like SN 2006jc, the prototype Ibn. SN 2006jc was seen in outburst at Mr~-14 pre-explosion, modeled as a Wolf-Rayet star with 40 Msun ZAMS, 6.9 Msun at explosion (Tominaga et al. 2008).

Sanders et al. 2013

Figure 2. Low-resolution spectroscopic sequence of PS1-12sk, with time since *z*-band peak noted at right. See Table 2 for observing details. The moderate resolution MMT/BC spectrum is shown separately in Figure 5. The locations of the He I features $\lambda\lambda$ 3188, 3889, 4121, 4471, 4922, 5016, 5876, 6678, 7065, 7281 are marked with solid lines; Hα with a dashed line; and C II $\lambda\lambda$ 6580, 7234 with dotted lines. Spectra of SN 2006jc at representative epochs (Pastorello et al. 2008a) are shown in red.

PS1-12sk is at 28 kpc projected separation from a Brightest Cluster (Elliptical) Galaxy

HST UV
observations
show no
apparent star
formation —
see 2kpc x
2kpc region
in bottom left.

Rings are in kpc. Nearest source may be ultra-compact dwarf 2.7 kpc away.

Possibilities

- 1. Hypervelocity Star (>2.7 kpc in 5M yrs, >530 km/s).
- 2. Luck star formation just shut off in the last 5 million years. But this would be the first time this has been seen. "We would expect this a few times per 100 million years per kpc²."
- 3. Some SNe Ibn do not come from massive stars

Not all SNe IIn are core collapse! Some are SNe Ia exploding in H-rich environment.

Silverman et al. (+DAH) 2013

What is the progenitor?

Could a white dwarf be exploding in a He-rich environment?

He nova?

In supernovae? He shell detonations on CO white dwarfs accreting from He white dwarfs (AM CVn systems; Bildsten et al. 2007, Shen et al. 2010). But doesn't match theoretical predictions.

Are all SNe Ibn the same?

Are SNe Ibn...

Ib or not Ib, that is the question (Shakespeare, 1603)