Systematic study of ejecta-companion interaction

"Ryo"suke Hirai (平井遼介) JSPS Overseas research fellow University of Oxford

THE PROM

OUNDED 1

Collaborators: Philipp Podsiadlowski (Oxford) Shoichi Yamada (Waseda)

Massive stars and supernovae @ Bariloche 6/11/2018

UNIVERSITY OF

OXFORD

Supernova classification

Mass loss mechanism

Single star wind mass-loss or Binary interaction?

Wolf-Rayet star WR124

Mass loss mechanism

Single star wind mass-loss or Binary interaction?

Heger et al. 2003

Lyman et al. 2016

Looks like binary interaction is more likely

Complete list of progenitor/companion non-/detections of stripped-envelope supernovae

Wheeler et al. 1975

SN ejecta

Companion

Companion

Wheeler et al. 1975

SN ejecta

Wheeler et al. 1975

: Parameter that indicates the capability of mass stripping

Unbound mass strongly depends on stellar structure + this analysis doesn't tell you much more...

We carried out hydrodynamical simulations of ejecta-companion interaction (ECI)

<u>Code</u>

- Eulerian hydrodynamic code
- HLLC approximate Riemann flux
- 2nd order in space, 3rd order in time
- Hyperbolic self-gravity (RH et al. 2016)

Step 1: 1D simulation of explosion

- Spherically symmetrical grid
- Explosion energy: 10⁵¹, 10⁵²erg
- \cdot Ejecta mass: 3.2M $_{\odot}$, 7.1M $_{\odot}$
- Progenitors made with MESA
- Explosion with "thermal bomb" method

Step 2: 2D simulation of ECI

- Cylindrical grid assuming axisymmetry
- \cdot Companion mass: 10, 15, 20M $_{\odot}$
- Companion radius: $5 9R_{\odot}$
- \cdot Orbital separation: 20, 30, 40, 60R $_{\odot}$

 10^{34}

 \rightarrow Ejecta profiles used for step 2

Radius

Stripped mass/Impact velocity

 $7.1M_{\odot}$ ejecta model

3.2M_• ejecta model

Heat injection

The companion star had some energy excess after the simulation

Model for energy injection

Energy transfer efficiency on a solid surface

Tracer particles

Surface pollution

Amount of ejecta tracer particles accreted onto the companion

Summary

- Stripped-envelope supernovae should arise from progenitors which have experienced binary interactions.
- Ejecta-companion interaction would not be important even for the most closest binaries in terms of mass removal and impact velocity.
- Energy injection by the ejecta can puff up the remaining companion and may be useful to constrain pre-SN binary parameters

Ongoing work

- Hydrodynamical modelling of the homunculus nebula of Eta Carinae
- Based on the merger scenario

