Stripped-Envelope SN Progenitors

Facultad de Ciencias Astronómicas y Geofísicas Massive Stars and Supernovae Bariloche – November 6th 2018

Gastón Folatelli

Massive stars and mass loss

- What is the origin of H-poor/free SNe (Types IIb, Ib, Ic)?
- How do massive stars lose their envelopes?
- Can we map SN Types back onto their progenitors' properties?
- What is the role of binarity?

Progenitor characterization

Direct detections Fractions and rates of each SN Type Associated stellar populations Hydrodynamical light-curve modeling Spectral modeling Very early observations

Schematic stellar structures (M. Modjaz)

Direct identifications

1994

WFPC2/F606W

2011

WFC3/F606W

High-resolution, deep imaging (HST) Combined with evolutionary tracks Feasible out to d ~ 30 Mpc

Single-star evolutionary model predictions – Smartt'09

2013

0.5"

WFC3 F555W

Direct identifications

High-resolution, deep imaging (HST) Combined with evolutionary tracks Feasible out to d ~ 30 Mpc

- Over a dozen SN II progenitor detections (S. Van Dyk's talk)
- **SNe lb:** only iPTF13bvn (confirmed) Blue progenitor likely in a binary system
- **SNe Ic:** SN2017ein (to be confirmed) Compatible with very massive star

SNe IIb: four confirmed Luminous YSG progenitors Three possible companion detections

Type IIb SN 2008ax (Crockett+08, GF+15) 1994 2011 2013 WFPC2/F606W WFC3/F606W WFC3 F555W A A A SN B B

0.5

Progenitor detections – Smartt+15

Direct identifications

- High-resolution, deep imaging (HST) Combined with evolutionary tracks Feasible out to d ~ 30 Mpc
- Over a dozen SN II progenitor detections (S. Van Dyk's talk)
- **SNe lb:** only iPTF13bvn (confirmed) Blue progenitor likely in a binary system
- **SNe Ic:** SN2017ein (to be confirmed) Compatible with very massive star
- **SNe IIb:** four confirmed Luminous YSG progenitors Three possible companion detections

Type IIb SN 2008ax (Crockett+08, GF+15)

Binary progenitor models – Eldridge+13

SN Type fractions

 Relative number of core-collpase
 Observations (Shivvers+17,Kuncarayakti+18)

 SNe
 Ib
 5% (N=46)

Compared with predictions from evolutionary models and IMF

Requires a definition of SN Types for the evolutionary models

Binary models (Yoon+17)

Environments

Light-curve shapes

- Multi-band photometry extinction bolometric flux
- Inferred ejecta masses
- Binary vs. single star progenitors

Inferred ejecta mass distributions (also Drout+11, Cano+13, Lyman+16)

Absolute optical + NIR light curves CSP SE SNe sample Taddia+18

Hydrodynamical models

LC and expansion velocities modeled to infer progenitor and explosion properties

Very early observations provide unique information of stellar structure

Talk by Laureano Martínez

Progenitor structures and light curves – M. Bersten

Hydrodynamical models

LC and expansion velocities modeled to infer progenitor and explosion properties

Very early observations provide unique information of stellar structure

Type IIb SN 2011dh: Radius from early-time light-curve model Plus interacting binary progenitor model

Very early/late spectra

- Highly-ionized emissions seen hours after the explosion
- Probes outer progenitor structure

Year-old spectra show emission from core Progenitor core masses inferred

Nebular spectrum model of Type IIb SN 2008ax Jerkstrand+15

"Flash spectroscopy" of Type IIb SN 2013cu Gal-Yam+14

First electromagnetic signal

Shock breakout (SBO) emission:

- A luminous burst of UV / X-ray radiation occurs when $\tau < v_{shock}$ / c
- Produces an emission peak in the optical long predicted by models Provides information about the external structure of the star

Shock propagation – Bersten+11

First electromagnetic signal

Shock breakout (SBO) emission:

- A luminous burst of UV / X-ray radiation occurs when $\tau < v_{shock}$ / c
- Produces an emission peak in the optical long predicted by models Provides information about the external structure of the star

First signal in optical

Characteristic SBO emission in optical bands

Weak, short-duration peak – hours for stripped progenitors

Different physical process to those that regulate the rest of the evolution Intensively sought for – with no success

Stripped-envelope SN hydro LC model

SBO optical emission – M. Bersten

Facultad de Giencias Astronómicas y Geofísicas UMERDENACIÓN CLA RAX

Early discovery

I A L P

CONICET

UNLP

M. Kasliwal / ZTF

Projects: iPTF, KISS, HiTS, HSC-SHOOT, ZTF, LSST, ULTRASAT

Facultad de Giencias Astronómicas y Geofísicas UMERDENCIME DE LA REK

Early discovery

I A L P

CONICET

UNLP

M. Kasliwal / ZTF

Projects: iPTF, KISS, HiTS, HSC-SHOOT, ZTF, LSST, ULTRASAT

Facultad de Giencias Astronómicas y Geofísicas UMERDENACIÓN CLA RAX

Early discovery

I A L P

CONICET

UNLP

M. Kasliwal / ZTF

Projects: iPTF, KISS, HiTS, HSC-SHOOT, ZTF, LSST, ULTRASAT

Supernova 2016gkg

Discovered by Víctor Buso on Sept. 20th 2016 The SN appeared *during* Víctor's observations

The "Observatorio Busoniano" in Rosario

Víctor with his 40 cm Newtonian

A unique observation

Hydrodynamical model

Stripped SN light curve

First self-consistent model of a SN during three physically distinct phases

Physical parameters

Ejected mass: 3.5 M 🌣 Expl. Energy: 1.2 x 10⁵¹ erg Progenitor radius: 320 R 🌣

Bersten, GF+18

Hydrodynamical model

Stripped SN light curve

First self-consistent model of a SN during three physically distinct phases No choice of physical parameters can reconcile the SBO slope with that of the cooling phase

Bersten, GF+18

Hydrodynamical model

Stripped SN light curve

First self-consistent model of a SN during three physically distinct phases

Initial rise rate

Possible presence of circumstellar material that slows down the initial rise

Bersten,GF+18

The progenitor of SN 2016gkg

Pre-SN HST imaging *BVI* photometry → R ~ 250 R ☆

Binary evolution model:

Progenitor with M ~ 4.6 M \approx R ~ 200 R \approx

Bersten, GF+18

- How do massive stars evolve before producing a core-collapse supernova?
- How do massive stars lose their outer envelopes?
- What is the role of interacting binaries in shaping the (outer) structures of SN progenitors?
- These questions require improving models, and multi-frequency follow-up from very early till very late

Thank you, Nidia!

