Non-thermal emission from stellar bow shocks

Santiago del Palacio

Facultad de Ciencias Astronómicas Y Geofísicas UNIVERSIDAD NACIONAL DE LA PLATA

PuMA group (<u>Pu</u>lsar <u>M</u>onitoring in <u>A</u>rgentina)

Runaway massive stars

Runaway stars have high peculiar spatial velocities (w.r.t. their surrounding medium), V_★ > 30-40 km/s . Close to %30-50 of the runaway stars are massive stars (Stone 1991). Observations show that ~**10-20% of O stars are runaway stars** (Maíz Apellániz+ 2018).

INTERSTELLAR BUBBLES

Thermal emission

Thick vectors = proper motions, thin vectors = proper motions w.r.t. the surrounding ISM. The catalogue has been extended by Kobulnicky+ 2016 to ~ 700 objects.

Continuum emission at 1.42 GHz (*left*), and at 4.86 GHz (*right*) from VLA observations (Benaglia+ 2010). Total flux: $S_{1.4} = 660 \text{ mJy}$, $S_{4.8} = 370 \text{ mJy} \rightarrow \langle \alpha \rangle = -0.5$.

This is the only reliable evidence of non-thermal emission in a stellar bow shock

Attempts to detect high-energy (X-ray / γ -ray) emission from stellar BSs (predictions by del Valle+12):

- Schulz+2014 → No stellar BS were detected with Fermi at 0.1-300 GeV energies in a sample of 27 objects.
- > <u>H.E.S.S. Coll. 2017</u> → No stellar BS were detected at TeV energies from 32 candidates. Upper-limits: $L_{TeV} < 0.1-1\% L_{wind}$
- > <u>De Becker+ 2017</u> → No stellar BS detected with XMM-Newton in X-Rays from 5 candidates. Estimate that $P_{IC} \sim 10^{-5} P_{W}$
- ➤ <u>Toalá+ 2016</u> → No stellar BS detected with XMM-Newton in X-Rays for 2 BSs (including BD+43)
- ➤ Toalá+ 2017 → No stellar BS detected with XMM-Newton in X-Rays (even refuted a previous false-positive).

Is it just a sensitivity issue?

Gamma-ray emission?

Sánchez-Ayaso+2018 recently suggested the <u>possible</u> association of two stellar BSs with unidentified *Fermi* sources

Extended Model: Geometry

Relativistic particles are **accelerated** in the BS and are carried away (**convected**) by the shocked wind. Relativistic electrons produce **synchrotron** and **IC emission**.

del Palacio, S., Bosch-Ramon, V., Müller, A., & Romero, G.E. (2018)

- BS = axisymmetric (2-D) shell.
- Adiabatic RS + laminar flow
- Analytical prescriptions for the thermodynamical quantities in the shocked SW + Bohm diffusion.
- Free parameters: The <u>magnetic field</u> <u>strength</u> (B) and the <u>fraction of energy</u> <u>injected in relativistic particles</u> (f_{NT}).

Particle escape is dominant: electrons radiate only ~1% of their energy, whereas protons essentially escape into the ISM as CRs

Model application to **BD+43 3654**: *i*) We can discard a combination of a high *B* and fast (Bohm) diffusion; *ii*) the expected γ -ray luminosity depends on B.

(See del Valle+ 2018 for a detailed analysis on the impact of diffusion)

Extended Model: Emission maps

Extended Model: BD+43° 3654

Luminosity Scaling

Selection criteria for observational campaigns: Useful scaling relations for the expected luminosity w.r.t. the system parameters show that the best candidates are defined by the stellar wind properties rather than the medium or peculiar motion

Conclusions

- ★ Numerical models → Constrain unknown parameters such as the magnetic field strength, the amount of energy injected in relativistic particles and acceleration efficiency. Deep observations in X-rays are useful.
- Assess future observational campaigns in the radio and γ -ray band in determining the most promising targets \rightarrow The NT luminosity is strongly dependent on the mass-loss rate.
- **Multi-zone models** \rightarrow Study the emitting structure by means of **synthetic emission maps**.
- + Our model reproduces the radio observations from **BD+43°3654** and predicts that the system γ -ray emission could be detectable with current or forthcoming instruments.
- **Stellar BSs can be efficient particle accelerators** (although not radiatively efficient).
- **★** Estimate surface stellar magnetic fields (or infer magnetic field amplification in the BS): $B_{\star} = 0.25 \ B(\theta) \left(R(\theta)/R_{\star} \right) \left(v_{\infty}/v_{\text{rot}} \right)$

We obtained a **deep** observation with **JVLA** (PI: P. Benaglia) to perform a **polarimetric study of BD+43°3654**:

- Improve previous spectral index maps and detect fainter emission farther from the apex: 10 times better sensitivity + spectral index error < 10%.
- Trace the magnetic field topology and strength around the shock: detect down to 5% fractional linear polarization (synchrotron emission is intrinsically polarized) at 5σ within a total intensity contour at 0.5 mJy beam⁻¹ \rightarrow Implications for particle acceleration theory.

Thank You

Parameters

Parameter	Generic	$BD+43^{\circ}3654$
$d \; [m kpc]$	1.0	1.32
i	90°	75°
$R_{0,\mathrm{proj}}$ [']	-	3.2
$L_{\star} [\mathrm{erg} \ \mathrm{s}^{-1}]$	2×10^{39}	$3.5 imes10^{39}$
T_{\star} [K]	40000	40700
$R_{\star} \; [R_{\odot}]$	15.0	19.0
$\dot{M}_{\star}~[M_{\odot}~{ m yr}^{-1}]$	1×10^{-6}	9×10^{-6}
$v_{\infty} \; [\mathrm{km \; s^{-1}}]$	2000	2300
$v_{\star} [{\rm km \ s^{-1}}]$	30	40
$T_{\rm IR}$ [K]	100	100
$n_{\rm ISM}~[{\rm cm}^{-3}]$	10	15
$T_{\rm ISM}$ [K]	~ 0	8000
$L_{\rm w,\perp} \ [{\rm erg} \ {\rm s}^{-1}]$	$7 imes 10^{35}$	$8.9 imes 10^{36}$
$f_{\rm NT,p}$	0.05	0.5
$f_{ m NT,e}$	0.05	0.004, 0.16
ζ_B	0.1	0.01, 1
p	2.0	2.2

17

Extended Model: Particle distribution

Particle escape is dominant: electrons radiate only ~1% of their energy, whereas protons esencially escape into the ISM as CRs

Extended Model

- Relativistic particles are accelerated once the fluid line enters the RS region, and flow together with the shocked fluid.
- The BS radiation is produced by a sum of 1D emitters symmetrically distributed around the direction of motion of the star.
- The hydrodynamics and particle distribution have azimuthal symmetry. Emission or absorption processes can depend on the line of sight (thus in the azimuthal angle)