Massive Stars and Their Environment

Claus Leitherer (STScI)

November 6, 2018

VIRGO SUPERCLUSTER

- IMF (including super-massive stars)
- Feedback (radiation, momentum, matter)
- Ionizing photon output and escape
- Metallicity of the host galaxy
- Cluster versus global galactic properties

Local Group and nearest galaxies

The Galaxy

Carina Nebula (Trumpler 14 & 16)

• NGC 3603

Other young clusters harboring massive stars

• Haikala et al. (2017): the Carina Nebula and its ionizing stars

Trumpler 14, 16: some of the most massive stars known in the Galaxy

η Carinae

 HD 93129A (O2 If*); Morrell, Walborn & Arias (2005)

November 6, 2018

Smith (2006); Smith & Brooks (2007): stellar and nebular properties

Number of O stars	$\log L \\ (L_{\bigodot})$	$\log \frac{Q_{\rm H}}{({\rm s}^{-1})}$	$\log L(FUV) \\ (L_{\bigodot})$	\dot{M} (10 ⁻⁶ M _☉ yr ⁻¹)	L_{SW} (L _O)
47	7.215	50.91	6.91	91	45400
43	7.240	50.78	7.05	1083	67000
42	7.240	50.77	6.79	1083	67000
10	6.61	50.34	6.31	18.7	13500
6	6.18	49.56	5.88	5.9	1300
1	6.00	49.42	5.69	18.3	7120
5	6.00	49.64	5.70	5.2	2900
1	4.68	47.88	4.38	0.15	33
70	7.38	51.06	7.08	139	70200
66	7.40	50.97	7.18	1131	91800
65	7.40	50.96	7.00	1131	91800
	Number of O stars 47 43 42 10 6 1 5 1 70 66 65	Number of O starslog L (L_{\odot}) 477.215437.240427.240427.240106.6166.1816.0056.0014.68707.38667.40657.40	Number of O starslog L (L $_{\odot}$)log $Q_{\rm H}$ (s ⁻¹)477.21550.91437.24050.78427.24050.77106.6150.3466.1849.5616.0049.4256.0049.6414.6847.88707.3851.06667.4050.97657.4050.96	Number of O starslog L (L $_{\odot}$)log $Q_{\rm H}$ (s $^{-1}$)log L (FUV) (L $_{\odot}$)477.21550.916.91437.24050.787.05427.24050.776.79106.6150.346.3166.1849.565.8816.0049.425.6956.0049.645.7014.6847.884.38707.3851.067.08657.4050.977.18	Number of O starslog L (L $_{\odot}$)log $Q_{\rm H}$ (s ⁻¹)log $L({\rm FUV})$ (L $_{\odot}$) \dot{M} (10 ⁻⁶ M $_{\odot}$ yr ⁻¹)477.21550.916.9191437.24050.787.051083427.24050.776.791083106.6150.346.3118.766.1849.565.885.916.0049.425.6918.356.0049.645.705.214.6847.884.380.15707.3851.067.08139657.4050.967.001131

 η Car currently not important but would contribute 25% of $Q_{\rm H}$ if closer to ZAMS

- O star mass-loss rates not clumping corrected
- Nebular H α is ~70% of the stellar ionizing flux
- Kinetic energy of the nebula is ~30% of the stellar-wind energy
- Supernova input is small (t = 3 Myr)

NGC 3603; *d* = 6.9 kpc

- Crowther & Dessart (1998): photon and energy budget
- $Q_{\rm H} = 1.3 \times 10^{51} \, {\rm s}^{-1}$; $L_{\rm w} = 5.5 \times 10^{38} \, {\rm erg} \, {\rm s}^{-1}$
- W-R are 10% of O numbers but provide 20% of $Q_{\rm H}$ and 60% of $L_{\rm w}$

Binder & Povich (2018): census of 28 Galactic clusters

- Left: comparison of stellar (horizontal) vs. nebular (vertical) Q_H
- Right: comparison of stellar (horizontal) vs. dust (vertical) L_{bol}
- 34% of Lyman photons are absorbed by dust before ionization of gas
- 68% of the stellar L_{bol} is absorbed and reprocessed by dust
- Sample includes Tr 14/16 and NGC 3603: excellent agreement

The Local Group

- Large Magellanic Cloud
- Small Magellanic Cloud
- M31

November 6, 2018

Sabbi et al. 2013: HTTP (Hubble Tarantula Treasury Project)

30 Dor: giant H II region

- NGC 2070: ionizing cluster
- R136: central core

Doran et al. (2013): massive star inventory in 30 Dor

Location of massive stars with spectroscopy Yellow: O stars; blue: B stars; red: W-R stars

November 6, 2018

Cumulative ionizing (left) and wind (right) luminosity for 30 Dor and R136

 $L_{\rm w} = 2.2 \times 10^{39} \text{ erg s}^{-1}$ (cf. NGC 3603) $Q_{\rm H} = 1.2 \times 10^{52} \text{ s}^{-1}$; 70% \rightarrow gas; 20% \rightarrow dust; 10% \rightarrow escape Photon leakage?

November 6, 2018

Borthakur et al. (2014): direct detection of Lyman escape at $z \approx 0.3$

Also: Izotov et al. (2016a, b; 2018).....

November 6, 2018

Crowther et al. (2010): R136 host stars with masses > 200 $\rm M_{\odot}$

Name	a1	a2	a3	с
BAT99	108	109	106	112
$T* (kK)^a$	53 ± 3	53 ± 3	53 ± 3	51 ± 5
$\log(L/L_{\odot})$	6.94 ± 0.09	6.78 ± 0.09	6.58 ± 0.09	6.75 ± 0.11
$R_{\tau=2/3}$ (R _O)	$35.4_{-3.6}^{+4.0}$	$29.5^{+3.3}_{-3.0}$	$23.4^{+2.7}_{-2.4}$	$30.6^{+4.2}_{-3.7}$
$N_{\rm LyC}~(10^{50}~{ m s}^{-1})$	$6.6^{+1.6}_{-1.3}$	$4.8^{+0.8}_{-0.7}$	$3.0^{+0.5}_{-0.4}$	$4.2^{+0.7}_{-0.6}$
$\dot{M} (10^{-5} \mathrm{M_{\odot} yr^{-1}})$	$5.1^{+0.9}_{-0.8}$	$4.6_{-0.7}^{+0.8}$	$3.7^{+0.7}_{-0.5}$	$4.5^{+1.0}_{-0.8}$
$\log \dot{M} - \log \dot{M}_{Vink}^c$	+0.09	+0.12	+0.18	+0.06
$V_{\infty} (\mathrm{kms^{-1}})$	2600 ± 150	2450 ± 150	2200 ± 150	1950 ± 150
X _{II} (per cent)	40 ± 5	35 ± 5	40 ± 5	30 ± 5
$M_{\rm init} ({ m M}_{\bigodot})^b$	320^{+100}_{-40}	240_{-45}^{+45}	165^{+30}_{-30}	220^{+55}_{-45}
$M_{ m current} \ ({ m M}_{\bigodot})^b$	265^{+80}_{-35}	195^{+35}_{-35}	135^{+25}_{-20}	175_{-35}^{+40}
$M_{K_{\rm s}}$ (mag)	-7.6 ± 0.2	-7.3 ± 0.2	-6.9 ± 0.2	-7.4 ± 0.2

- Very massive stars significantly affect the photon budget
- Important for IMF
- 30 Dor IMF has excess of very massive stars (Schneider et al. 2018)

Lopez et al. (2011): comparing pressure components in 30 Dor

- Mapping pressures in radio, IR, UV/optical, X-rays
- Dust-processed radiation pressure and hot gas pressure are not important
- Radiation pressure dominates within 75 pc of R136
- H II gas pressure dominates at larger radii.

Lopez et al. (2014): generalize prior study to 32 LMC and SMC H II regions

- Radiation pressure no longer dominant
- No signatures to indicate that shocks are an important source of ionization
- Well described by photoionization from the central clusters where the ionizing continuum is dominated by the most massive O stars

McLeod et al. (2018): VLT/MUSE observations of N44 and N180

- MUSE: IFU with 1 arcmin FOV; 8 by 8 mosaic
- Obtain spectra of gas and all ionizing stars at the same time

$$P_{\rm dir} = \frac{Q_{0,\star} \langle h\nu \rangle}{4\pi R^2 c}$$

$$P_w \simeq 2.3 \times 10^{-12} \left(\frac{L_w}{10^{36} \text{ erg } s^{-1}}\right)^{2/5} \left(\frac{n_0}{0.25 \text{ cm}^{-3}}\right)^{3/5}$$

$$\left(\frac{10^6 \text{ yr}}{t}\right)^{4/5} \quad \text{dyn cm}^{-2}$$

$$P_{\rm ion} = (n_{\rm e} + n_{\rm H} + n_{\rm He}) kT_{\rm e} \approx 2n_{\rm e} kT_{\rm e}$$

- Feedback from the massive stellar population in individual subregions
- Direct radiation pressure P_{dir}
- Pressure from stellar winds P_w
- Pressure of the warm ionized gas P_{ion}
- The warm ionized gas and winds drive the expansion of the H II regions

for 27 500 $< T_{\rm eff} \leq 50\,000~{\rm K}$

- Wind input may have been overestimated
- Assumed solar abundances for mass-loss rates
- Mass-loss rates scale with heavy-element abundances (Vink et al. (2001)
- Generally supported by data in the LMC and SMC
- Weak wind features in spectra of extremely metal-deficient galaxies
- Difficult to disentangle from uncertainties in L

Weisz et al. (2015): PHAT (Panchromatic Hubble Andromeda Treasury)

- IMF determination in young M31 clusters
- Slope at the upper end close to Kroupa (2002)
- No significant dependence on environment and other cluster properties
- Caveat: exclusively based on photometry

and beyond

- NGC 5253
- II Zw 40
- LEGUS clusters

November 6, 2018

Smith et al. (2016): HST COS spectroscopy of a massive cluster in NGC 5253

- $M = 3 \times 10^5 \mathrm{M}_{\odot}$
 - *t* < 2 Myr
- Spectrum strikingly similar to that of central stars of NGC 2070
- Presence of very massive stars is likely

Kepley et al. (2014): thermal radio emission in II Zw 40

- II Zw 40: original "extragalactic HII region" (Searle & Sargent 1971)
- O/H+12 =8.09; D=11.1 Mpc; $M_{dyn} = 6 \times 10^9 M_{\odot}$
- Dominated by one ionizing cluster "SSC-N" and associated giant H II region
- $M = 9 \times 10^5 \text{ M}_{\odot}$, $L_{\text{Bol}} = 1.1 \times 10^9 \text{ erg s}^{-1}$, $Q_{\text{H}} = 6 \times 10^{52} \text{ s}^{-1}$, t = 2.8 Myr
- Order of magnitude more massive and luminous than 30 Dor (Leitherer et al. 2018)

Sokal et al. (2016): emerging star clusters with W-R features

- Star clusters selected as thermal radio emitters and embedded in dust
- W-R features commonly detected at ages as young as 2 Myr
- Birth material cleared out by W-R winds
- Genuine W-R stars not predicted by evolution models at this age

Calzetti et al. (2015): HST LEGUS (Legacy Extragalactic UV Survey)

- Panchromatic UV to near-IR imaging of NGC 5253
- Labels indicate ages in Myr; Cluster #5 is at the very top
- Age gradient → propagating star formation

15.3 pc

H I tail → interaction with M83 and infall of gas (López-Sánchez et al. 2012)

Hunter et al. (2018): environmental effects in LEGUS galaxies

- Star clusters characterized by concentrations, masses, and formation rates
- Compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate surface density
- No trend of cluster characteristics with environmental properties
- Rapid dynamical evolution may erase any memory of the initial conditions.

What the local view tells us for extrapolation to the early universe

- Massive stars with masses > 200 M_{\odot} exist
- Massive stars and their strong winds shape the ISM prior to cc-SN formation
- Photons leak out
- No strong evidence for an anomalous IMF
- Evolution models for massive stars are uncertain