Challenges in the understanding of the
evolution of massive stars
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Challenges in the understanding of the
evolution of massive stars

Anahi Granada, Instituto de Astrofisica La Plata (IALP)

In replacement of Georges Meynet, Geneva University
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THE CHALLENGES

CONVECTION -> physics of the boundaries of the convective zones?
- how to go beyond the mixing length theory?

MASS LOSS - impact of pulsation, dust?
-> origin/frequency/conditions for outbursts?

ROTATION - transport processes?
-> origin of fast rotators?

MAGNETIC FIELDS ->impact of wind magnetic braking?
->impact on the core rotation at the pre-SN stage?

MULTIPLICITY -> Is mass transfer/CE phase the sole significant effects?
- How to handle with the numerous parameters?




CONVECTION
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Gabriel, Noels, Montalban, Miglio 2014, A&A 596, A63

Position of the convective boundaries--> interp/extrapolation from within the convective region.



CONVECTION

QEM. 25 IMSUH (second cﬂgossingl BSG? .

7.8 15 760 7,865 T 7.7 T.RED .85 [ T.4960 7.5 M 787 1.0

t (M| tMyr
Georgy, Saio, GM, 2014, MNRAS, 439, L6
model /star N/C N/O Xy

bSugaCe “Schwarzschild” (model) 57.86 4.17 0.635
apbundances “Tedo” [:IHEIEI-E]) 6.07 1.61 ().45%



CONVECTION

‘Extrapolating the weather to determine the climate.’
Arnett & Meakin 2016,

Reports on Progress in Physics, Volume 79, Issue 10, article id. 102901

Arnett & Meakin 2007
See also Cristini et al. 2016



Impact on evolution
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MASS LOSS : wind or outbursts
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MASS LOSSES

The luminosity function of RSG depends on the mass losses during the RSG phase
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MASS LOSSES

5.6

Impact on the CCSN progenitors
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ROTATION
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Rotation of LC V stars reflects the different mechanisms
governing the formation and evolution of stars



TRANSPORT PROCESSES INDUCED BY ROTATION

What is needed : -An energy reservoir

-A process which extracts
energy from this reservoir
for producing a movement

Two types of energy reservoir

1) Excess energy in 2) Energy of rotation

differential rotation

Gradient of Q needed Q needed

The process is viscosity The process is meridional
circulation



WITH INTERNAL
MAGNETIC FIELD

WITHOUT INTERNAL
MAGNETIC FIELD

Zahn 1992 Spruit 1999, 2002

But Zahn et al. 2007

Differential rotation |Solid body rotation

Mixing of the elements | Mixing of the
due to shear elements due to
meridional circulation

Efficiency of mixing = dQ/dr || Efficiency of mixing = Q

CONSEQUENCES FOR THE EVOLUTION OF THE ANGULAR MOMENTUM
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THE TWO FAMILIES OF ROTATING STELLAR EVOLUTION MODELS

MODELS WITHOUT
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Mixing efficiency increases
with rotation, initial masses, decreasing metallicity in both cases
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Angular momentum in the remnant

Suijs+ 2008
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Magnetic coupling between the core and the intermediate radiative zone ?
Maeder and Meynet (2014)

If Pulsar 10*? G for a density of 10146 g cm-3 flux conservation>B_~22 000 G in core at mid He-
burning phase
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A few Challenges in massive star evolution
ROTATION MAGNETIC FIELD MULTIPLICITY
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Huang et al. 2010 MIMES Survey (Wade et al.) Sana et al. 2012

What is the origin of these distributions

How do these distributions vary with metallicity?

How do these distributions vary with the environment? (e.qg. stellar density)

What are the impacts on the interior?



THESE PROCESSES ARE INTERCONNECTED
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THESE PROCESSES ARE KEYS FOR

STARS AND SUPERNOVAE

CONVECTION

Lifetime CCSN progenitors

S T E Gl VMASS LOSSES

Supernova type
SRl ROTATION SN explosion

Y15 TRV I MAGNETIC FIELDS Light curve

Nucleosynthesis MULTIPLICITY Remnant

IMPACT OF CHEMICAL COMPOSITION
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