A MUSE Adaptive Optics view of the SMC cluster NGC 330

Julia Bodensteiner¹

Hugues Sana¹, Laurent Mahy¹, Alex de Koter^{1,2}, Norbert Langer³

¹ Institute of Astronomy, KU Leuven, Belgium ² Anton-Pannenkoek-Institute, Amsterdam, The Netherlands ³ Argelander Institute, Bonn, Germany

KU LEUVEN

Massive Stars and Supernovae, 5th November 2018, Bariloche Argentina

Introduction & Background

- importance of massive stars
 - strong winds
 - highly energetic radiation
 - SNe & GRBs
- → feedback triggers star formation
- massive stars live in binaries
 - strong impact on standard theory of stellar evolution
 - outcome and end products still poorly understood

https://apod.nasa.gov/apod/ap160226.html

Abbott et al. 2017, Bromm et al. 2009, De Rossi et al. 2010, Langer 2012, Robertson et al. 2010, Sana et al. 2012, Schneider et al. 2018, ...

- identify massive (pre-supernova) post-interaction products (PiPs)
- characterize their physical and chemical properties
- better understand the impact of binary interaction on the evolution of massive stars

de Mink et al. 2013; 2014, Sana et al. 2012

- PiPs live longer and appear younger than their sibling stars
- number of PiPs in a single-starburst cluster peaks at ~8 40 Myrs

- PiPs live longer and appear younger than their sibling stars
- number of PiPs in a single-starburst cluster peaks at $\sim 8 40$ Myrs

Milone et al. 2018 Martayan et al. 2007 Sirianni et al. 2002

Schneider et al. 2015

Previous studies of NGC 330

FLAMES spectroscopy of 125 stars

- \rightarrow 6 O stars (5 ± 2%)
- \rightarrow high Be star fraction (23 ± 4%)
- \rightarrow low binary fraction (4 ± 2%)

Evans et al. 2006

Previous studies of NGC 330

Previous studies of NGC 330

MUSE SV data with new Adaptive Optics

FoV 1' x 1' Δx 0.2" λ 4650 – 9300 Å R 2000 – 4000

2 epochs during SV in Aug/Sep 2017 with AO

Bacon et al. 2010

Spectral classification

example MUSE spectra

Spectral classification

Spectral types

FLAMES spectroscopy of 125 stars

- \rightarrow 6 O stars (5 ± 2%)
- \rightarrow high Be star fraction (23 ± 4%)
- \rightarrow low binary fraction (4 ± 2%)

MUSE spectroscopy of 194 stars (V < 18) → no O stars

Spectral types

Results

- interpreting Be stars as PiPs supports the target selection strategy
- in the outskirts:

Evans et al. 2006

- \rightarrow few O stars
- \rightarrow high Be star fraction

- in the core:
 - \rightarrow no O stars
 - \rightarrow even higher Be star fraction

Results

- interpreting Be stars as PiPs supports the target selection strategy
- in the outskirts:

Evans et al. 2006

- \rightarrow few O stars
- \rightarrow high Be star fraction

- in the core:
 - \rightarrow no O stars
 - \rightarrow even higher Be star fraction

possible scenarios:

- 1) age difference between cluster outskirts and core
 - \rightarrow 2 phases of star formation

→ See Milone et al. 2018

Results

- interpreting Be stars as PiPs supports the target selection strategy
- in the outskirts:

Evans et al. 2006

- \rightarrow few O stars
- \rightarrow high Be star fraction

- in the core:
 - \rightarrow no O stars
 - → even higher Be star fraction

possible scenarios:

- 1) age difference between cluster outskirts and core
 - \rightarrow 2 phases of star formation

→ See | Milone et al. 2018

- 2) binary interaction
 - → Be stars are accretors / mergers
 - → O stars are blue stragglers ejected from the core ("runaways / walkaways")

17

Future work

waiting for 3 additional epochs
→ determine current binary fraction

 estimate T_{eff}, log g, v_{rot} and surface abundances for all stars with V < 18

• compare to population synthesis codes with single- and binaryevolutionary models in order to distinguish between the scenarios

Brott et al. 2011, Ekström et al. 2012, de Mink et al. 2014, Eldridge et al. 2017

Extra slides

Example spectra

Spectral extraction with PampelMUSE

- PSF fitting approach
- 2000 spectra extracted
- ~ 150 stars with V < 18
 - $\rightarrow \approx M > 8M_{sum}$
 - \rightarrow S/N = 200 in 5 epochs

Spectral extraction with PampelMUSE

